8g 7/7 schede dei dati di base

schede da 191 a 237

COMUNE DI POGGIBONSI PIANO STRUTTURALE

APPROVAZIONE

Novembre 2013

Lucia Coccheri - Sindaco

Giampiero Signorini - Assessore all'Urbanistica

> Fabio Galli - Dirigente Settore Edilizia e Urbanistica

Pietro Bucciarelli - Progettista

Roberto Gori - Cartografia e SIT

Paolo Rinaldi, Sabrina Santi, Duccio Del Matto -

Collaboratori

Paola Todaro - Responsabile del procedimento

Carla Bimbi, Fabiola Conforti, Stefania Polidori, Tiziana Viti -Collaboratori al procedimento

Tatiana Marsili - Garante della comunicazione

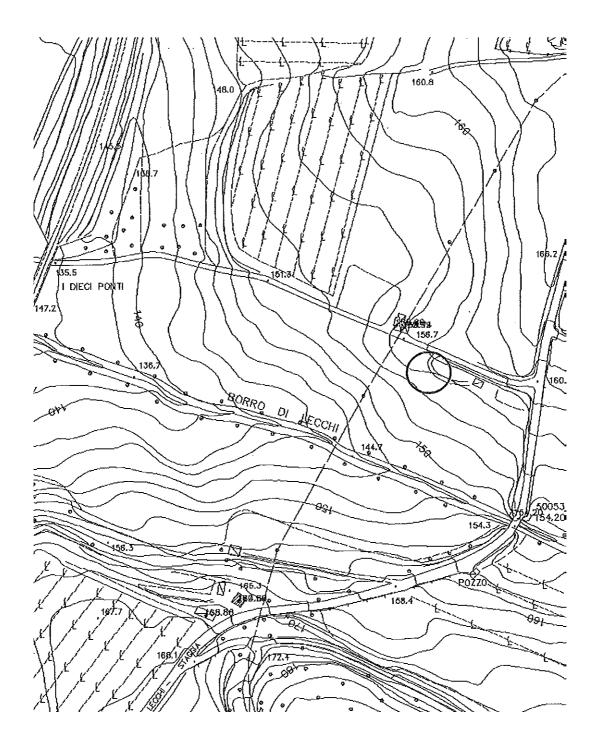
Idp progetti gis - Sistema informativo e schedatura edifici

Studio Aleph - Mobilità

Elisabetta Norci - V.A.S.

Monica Coletta - Studi Agronomici e Paesaggistici

Michele Sani - Ind. geologiche


Alessio Gabbrielli - Studi idraulici

Sociolab - Partecipazione

(Provincia di Siena)

Scheda Indagine N.:	191
RIFERIMENTO PRATICA EDILIZIA:	10/0554
Località:	Loc. I Dieci Ponti – Comune di Poggibonsi
Ркодетто:	Perforazione di pozzo ad uso domestico
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	24/09/2010
N оте:	

COROGRAFIA UBICATIVA

CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0-6	Sobre linesa
6 - 68	Argella himosa Grigia
68-7-1	Gluiaisi eau sobbier
71-73	Argella limoson

(Provincia di Siena)

SCHEDA INDAGINE N.:

192

RIFERIMENTO PRATICA EDILIZIA:

02/0949

LOCALITÀ:

LOC. STAGGIA SENESE - COMUNE DI POGGIBONSI

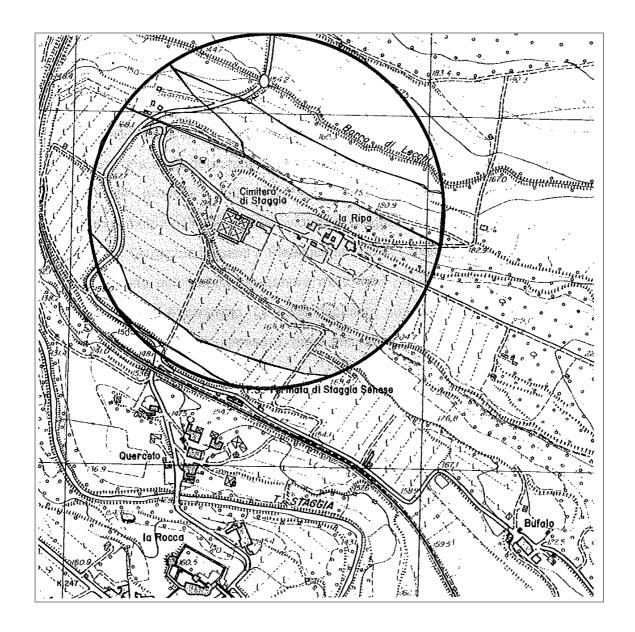
PROGETTO:

AMPLIAMENTO CIMITERO

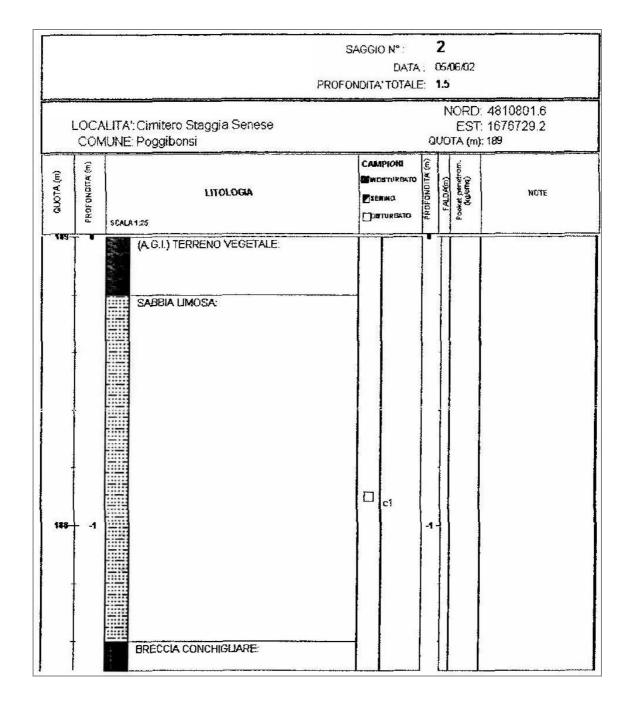
NUMERO E TIPO DI INDAGINE:

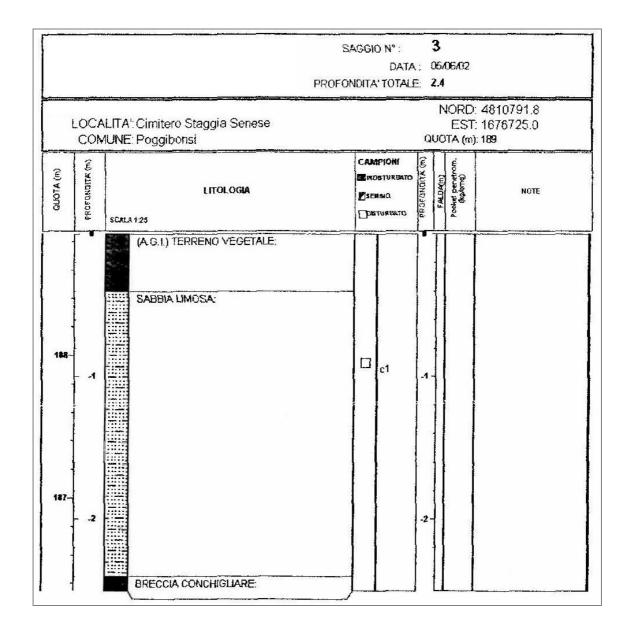
4 CAROTAGGI CONTINUI
3 CAMPIONI PER PROVE DI LABORATORIO
3 PROVE PENETROMETRICHE CPT

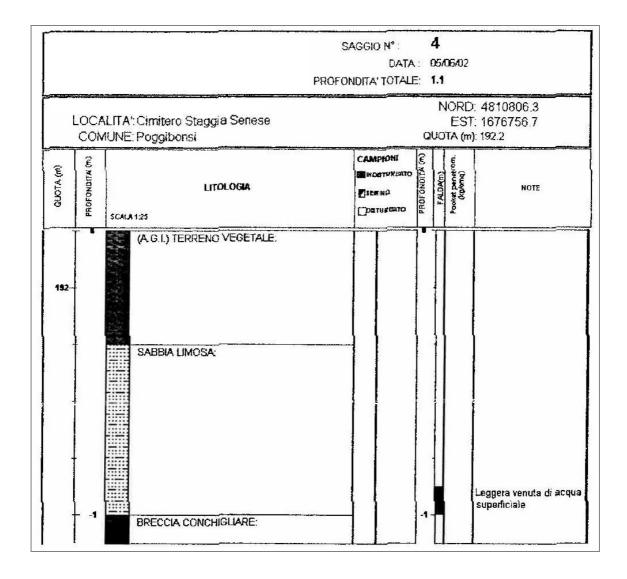
ALLEGATI:
4 CAROTAGGI CONTINUI
3 CERTIFICATI DI LABORATORIO


DATA INDAGINE:

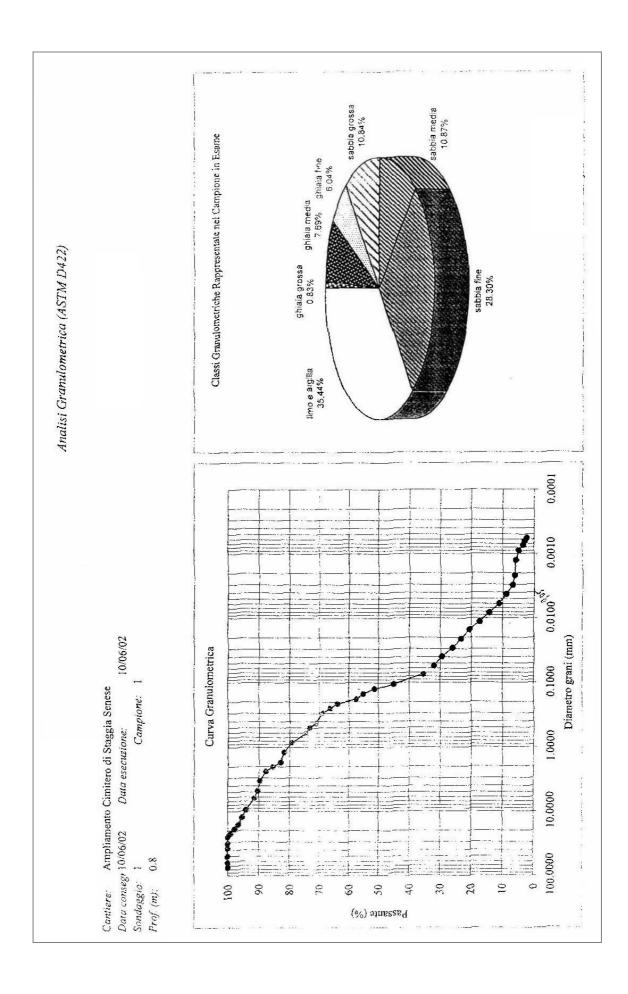
05/06/2002

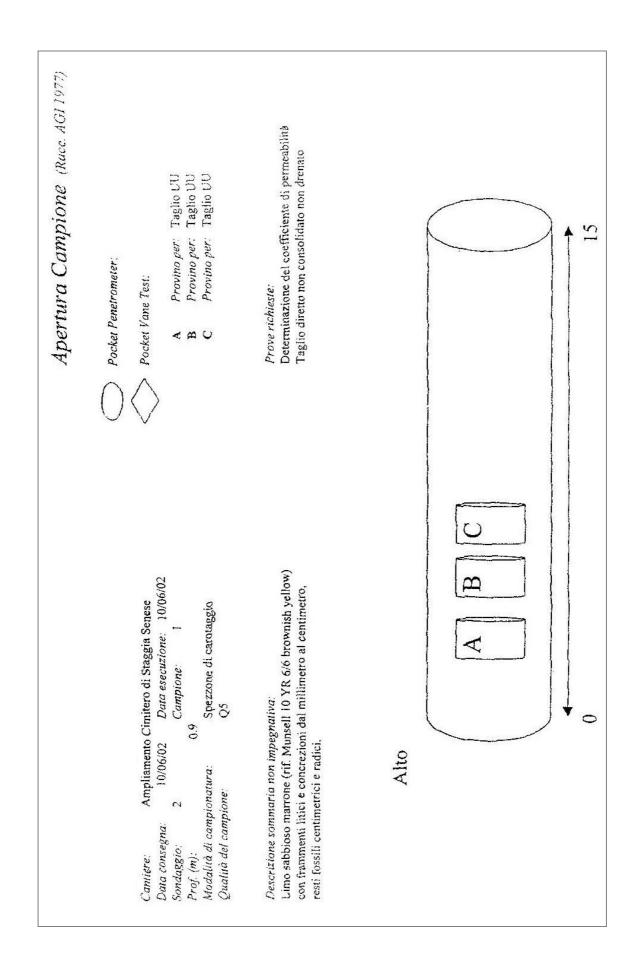

3 CERTIFICATI PROVA CPT

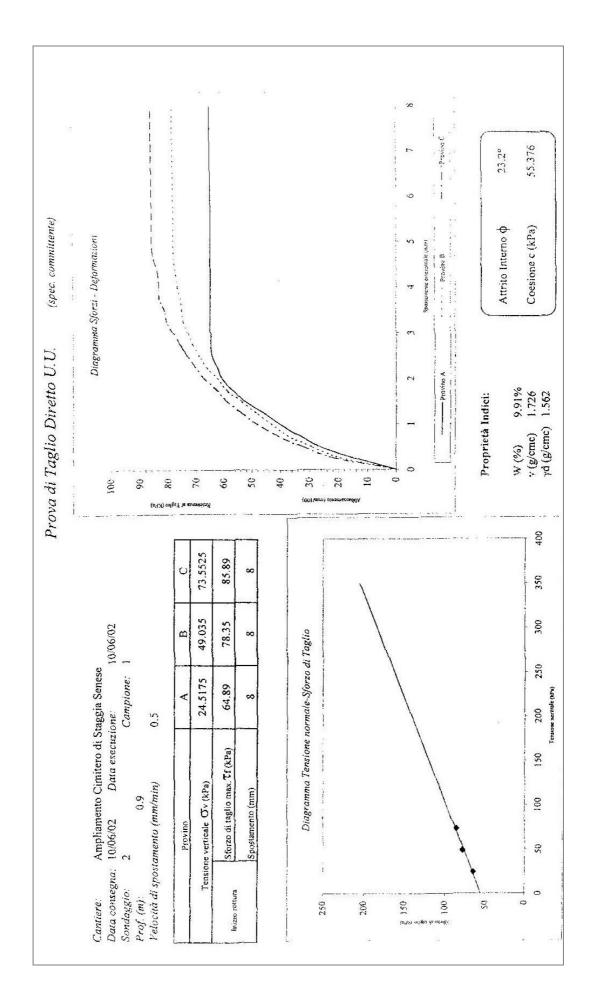

NOTE:

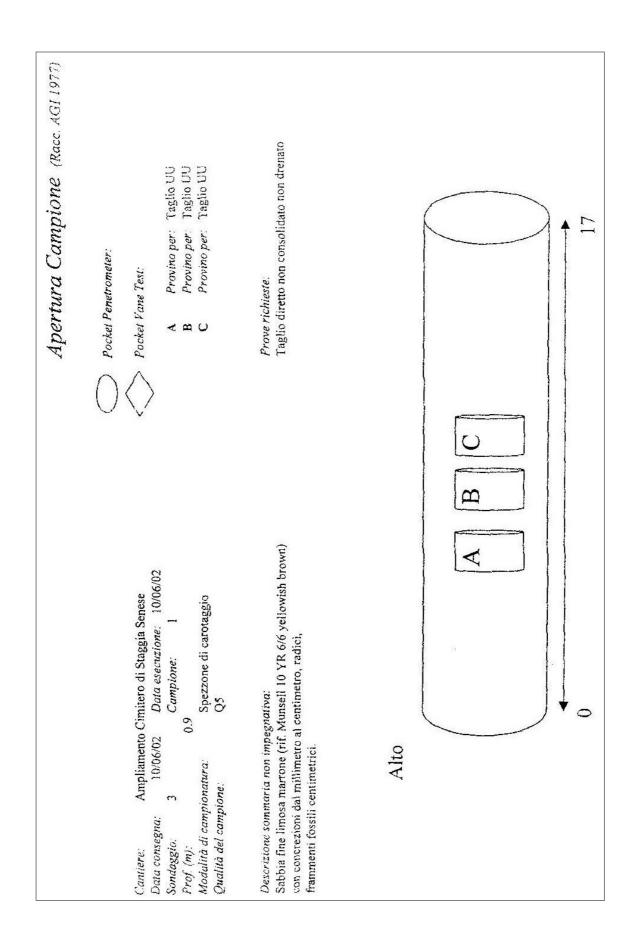

sulla relazione non è riportata l'esatta ubicazione dei sondaggi

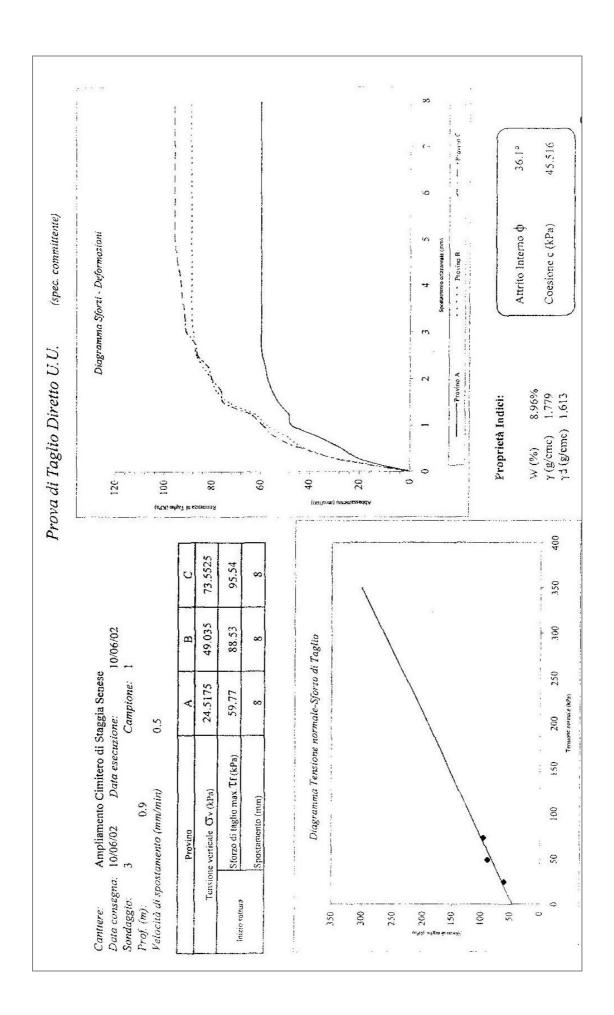
<u> </u>		ALITA': Cimitero Staggia Senese AUNE: Poggibonsi	SAGGIO N°: 1 DATA: 05/06/02 PROFONDITA' TOTALE: 1.1 NORD: 4810796 EST: 1676747 QUOTA (m): 190
GLOTA (m)	PROFONDITA (m)	LITOLOGIA	CAMPIONI E MACE NOTE NOTE
189	1	(A.G.I.) TERRENO VEGETALE: SABBIA LIMOSA: BRECCIA CONCHIGLIARE:	






	Apertura Campione (Racc. AGI 1977)
Cantiere: Ampliamento Gimitero di Staggia Senese Data consegna: 10/06/02 Data esecuzione: 10/06/02 Sondaggio: 1 Campione: 1 Prof. (m): 0.8 Modalità di campionatura: Camp. Sciolto Qualità del campione: Q2 Descrizione sommaria non impegnativa: Sabbia fine limosa marrone chiaro (rif. Munsell 2.5Y 6/6 Olive Yellow) con rari clasti centimetrici e resti fossili in frammenti pluricentimetrici.	Pocket Penetrometer: Pocket Vane Test: Prove richieste: Analisi granulometrica
W (%) 21.55	


		0							- 20	5 35,4425		Passante	Totale %									
		1	.1	. 1						64.557		Paraiola	raiziaic									
Diametro Grani mm.	0.3	0.25	0.212	0.18	0.15	0.125	0.106	0.074	0.063	0.037		Diametro	grani mm.	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Crivello o Setaccio ASTM	50	99	70	80	00	120	140	200	230	400		Passante	Totale %									
Passante	91.488	90.238	89.613	87.738	85.448	82.948	81.698	79:98	74.604	73.354	71.374	Passante	Parziale %									
Trattenuto %	8.513	9.763	10.388	12.263	14.553	17.053	18.303	20.803	25.396	26.646	28.626	Diametro	grani mm.	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Diametro Grani mm.	6.3	4.75	3.35	2.36	2	1.7	1.18	0.85	9.0	0.5	0.425	Passante	Totale %	6.8128	6.2450	5.6773	4.7689	3.4064	2.8387	2.2709		
Crivello o Setaccio ASTM	1/4	4	9	8	10	1.2	16	20	30	35	40	Passante	Parziale %	19.22205	17.62021	16.01838	13.45544	9.61103	8.00919	6.40735		
Passante %	100.000	100.000	100.000	100.000	100.000	100.000	99.175	97.925	96.675	95.425	94.175	Diametro	20		199	1	-	- (0.00064	0.00058	0.00000	0.00000
Trattenuto	0.000	0.000	0.000	0.000	0.000	0.000	0.825	2.075	3.325	4.575	5.825	Passante	Totale %	32.020	29.522	26.116	23.277	20.438		14.193	11.128	8.857
0.8 Diametro Grani mm.	7.5	63	50	37.5	31.5	25	22.4	19	16	12.5	5'6	Passante	Parziale %	90.343639	83.295554	73.684529	65.675341	57.666153	48.695862	40.045939	31.396017	24.988666
Prof. (m): Crivello o Setaccio ASTM	3	2.5	7	11/2	1 1/4	-	2/8	3/4	8/8	1/2	3/8	Diametro	grani mm.	0.054387	0.039430	0.028793	0.020882	0.015126	0.011333	0.008205	0.005934	0.004264



			Determinazione del coefficiente di permeabilità diretta (mediante Permeametro a carico variabile in cella edometrica)
Cantiere: Ampliame Data consegna: 10/06/02 Sondaggio: 2 Prof. (m): 0.9	Ampliamento 10/06/02 2 0.9	Ampliamento Cimitero di Staggia Senese 10/06/02 Data esecuzione: 10/06/02 2 Campione: 1 0.9	402
Proprietà Indici:	÷		
W (%) γ (g/cmc) γd (g/cmc)	9.91% 1.70 1.56		
Osservazioni: Carico applicato	0 19.614	kPa	Coefficiente di permeubilità direna "K" (cm/sec)
			1.51E-96

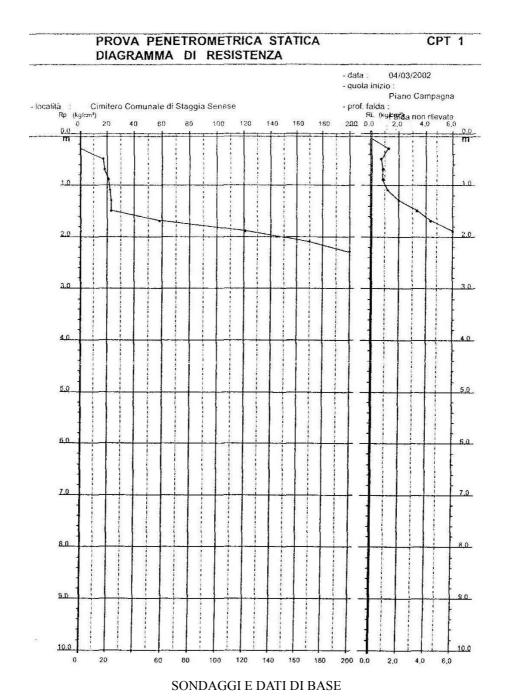
- località :

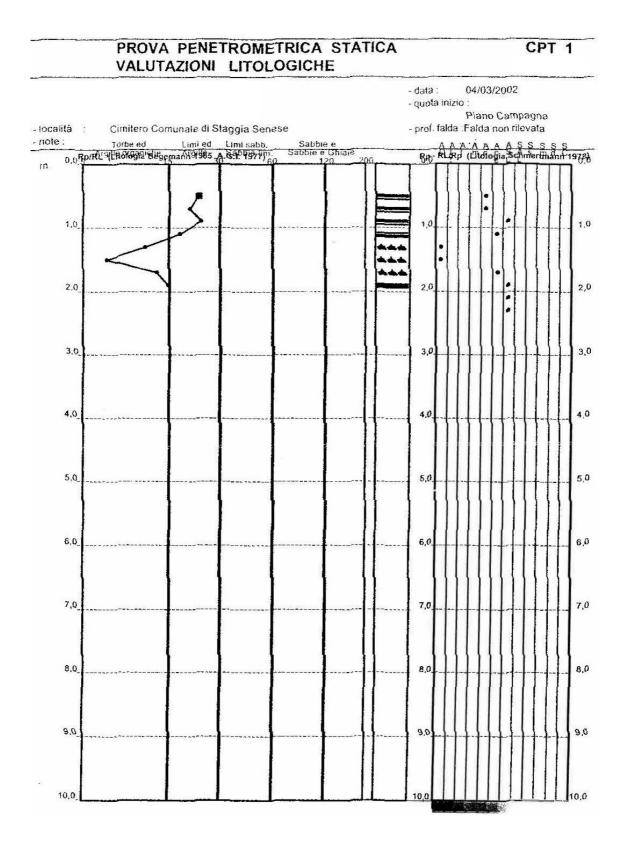
PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

Cimitero Comunale di Staggia Senese

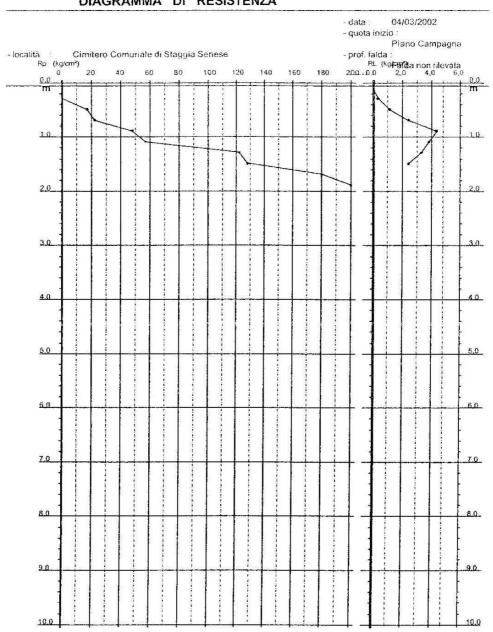
CPT 1

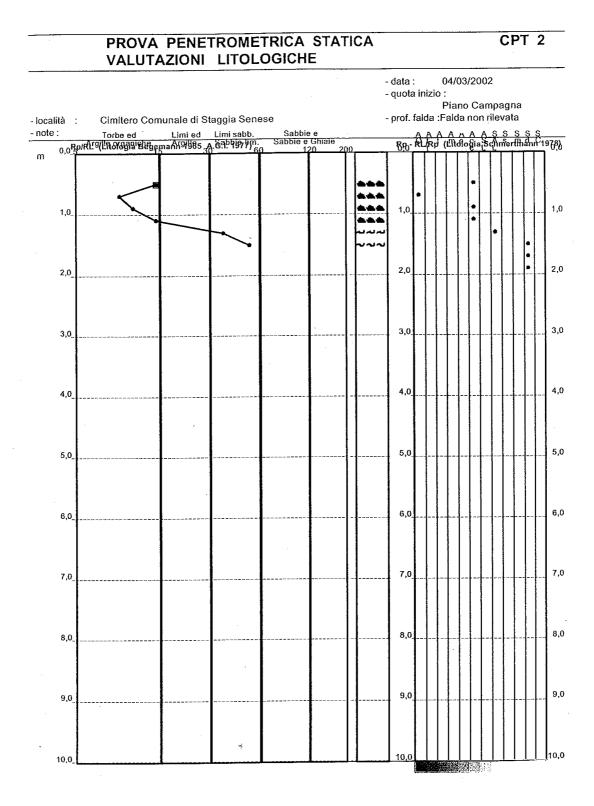
- data : 04/03/2002


- quota inizio:


Piano Campagna

- prof. falda ;Falda non rilevata


- pagina :


	1770	35505	FC 187	N 822					990 PE - 12				200	- pa	gilla .				1000		
					36.8	» NAT	URA	COES	IVA .	3	18.34	344	100	NATL	RA C	RAN	UĽA	RE	100	d ev	37.
Prof.	Rp	Rp/RI	Natura	4	pho	Çu	OCR	Eu50	Eu25	Mo	Dr	015	925	D3S	645	pcim	gerry	Arrest/g	6:50	E25	Ma
100	kg/cm²	()	Litot.	t/m³	kg/cm²	kg/cm²	(-)	kg/c	n r	kg/cm²	%	(7)	(°)	(°)	(°)	(*)	(7)	(-)	kg	cm² k	g/cm²
0,20			777	1,85	0,04						755						_				
0,40		_	???	1,85	0,07				-	-						74		4.			
0,60	17	23	2011	1,85	0,11	0,72	65,4		184	54									100		**
0.80	18	21	200	1.85	0.15	0,75	47,7	128	191	56	-									24	
1.00	21	24	4/3:	1,85	0,19	0.82	40,6	140	710	63	60	36	38	41	43	38	27	0.129	35	53	63
1,20	22	18	4/:/:	1,85	0.22	0.85	33,4	144	216	66	57	36	38	40	43	37	28	0.121	37	55	66
1.40	23	12	4/1:	1,85	0.26	0.87	28.5	148	221	69	54	36	38	40	42	36	28	0.115	38	58	69
1,50	23	7	Att.	1,85		0,87	24,1	148	221	69	51	35	37	40	42	36	28	0,107	38	58	69
1.80	58	13	At.I.	1,85	0,33	1,93	56,6	329	493	174	80	39	41	43	44	40	31	0,190	97	145	174
2.00	121	16	41.1	1,85	0,37	4,03	99.9	586	1029	363	100	42	43	45	46	42	35	0.258	202	303	363
220	170	122	3::::	1.85	0.41		<u></u>	_		_	100	42	43	45	46	43	37	0.258	283	425	510
2.40	320		3:::.	1,85	0.44						100	42	43	45	46	45	40	0.258	533	800	960

PROVA PENETROMETRICA STATICA CPT 2 TABELLA PARAMETRI GEOTECNICI 04/03/2002 - data : quota inizio : Piano Campagna - località : Cimitero Comunale di Staggia Senese - prof. falda :Falda non rilevata - pagina : NATURA COESIVA NATURA GRANULARE Prof. Rp Rp/Ri Natura Y pho m kg/cm² (-) Lital sine kg/cm² Eutin Eu25 Mo kg/cm² kg/cm² E'50 E'25 Mo kg/cm² kg/cm² ø3s (*) (-) 0,04 0,07 0,11 0,15 0,19 0,22 0,26 0,36 0,33 0,37 0,20 0,40 0,80 0,80 1,00 1,40 1,60 1,60 2,00 777 2/8 4/1: 4/1: 3::: 3::: 3::: 0,149 0,216 0,221 0,258 0,258 0,258 0,258 PROVA PENETROMETRICA STATICA CPT 2 DIAGRAMMA DI RESISTENZA - data : 04/03/2002

PROVA PENETROMETRICA STATICA CPT 3 TABELLA PARAMETRI GEOTECNICI - data : 04/03/2002 - quota inizio: Piano Campagna - località : Cimitero Comunale di Staggia Senese - prof. falda :Falda non rilevata - note: - pagina : NATURA COESIVA NATURA GRANULARE Natura Litol. E'50 E'25 Mo kg/cm² kg/cm² 85 102 63 75 93 111 145 174 253 303 296 357 335 402 777 473: 473: 473: 3:: 3:: 3:: 0,04 0,07 0,11 0,15 0,19 0,22 0,26 0,30 0,33 1,13 0,91 1,23 1,93 57 42 62 97 168 198 223 34 25 37 58 101 119 134 0,218 0,162 0,187 0,223 0,258 0,258 0,258 89 71 79 90 100 100 100 29 28 30 31 34 35 35 1,85 1,85 1,85 1,85 1,85 1,85 PROVA PENETROMETRICA STATICA CPT 3 DIAGRAMMA DI RESISTENZA 04/03/2002 - data : - quota inizio : Piano Campagna - prof. falda : - località : Cimitero Comunale di Staggia Senese RL (kg/pgr/g/a non rilevata 200 0 0 2,0 4,0 6,0 Rp (kg/cm²) 160 180 20 40 60 80 100 120 140 0.0 2.0 2.0 3.0 5,0 5.0 6.0 7.0 7.0 8.0 9.0 10.0 10.0

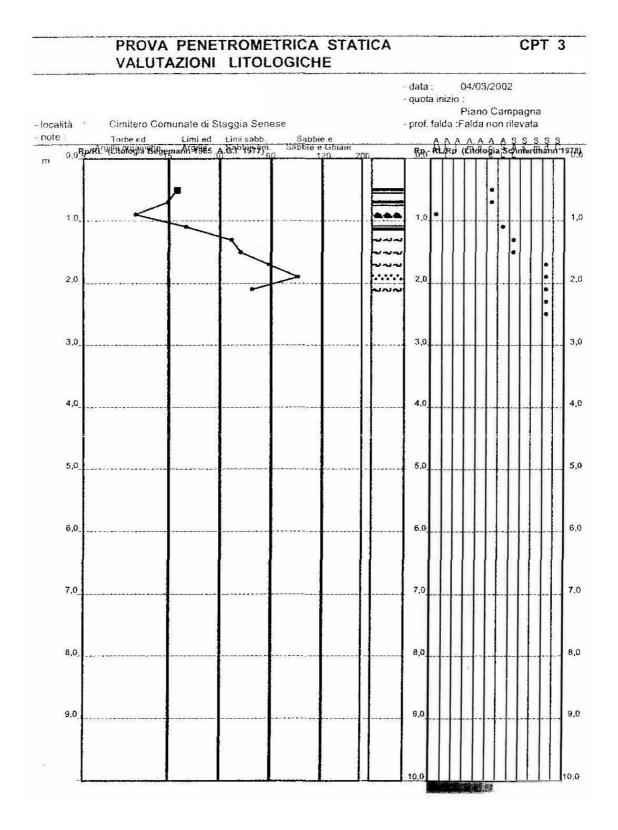
140

160

180

200 0,0

2,0

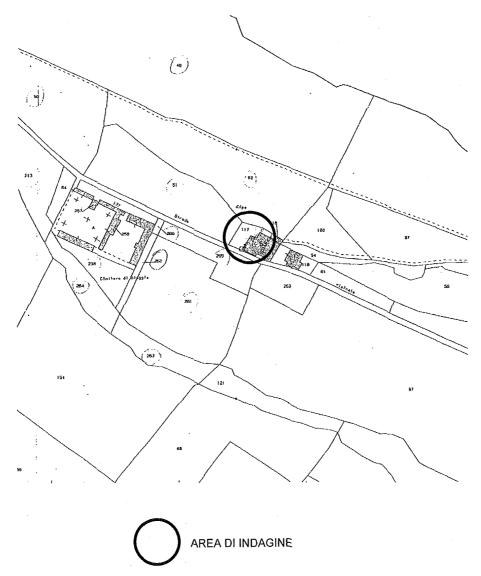

4,0

60

80

100

120



(Provincia di Siena)

SCHEDA INDAGINE N.:	193
RIFERIMENTO PRATICA EDILIZIA:	05/0889
Località:	loc. Santa Lucia – Comune di Poggibonsi
Progetto:	Perforazione di pozzo ad uso domestico
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
A llegati:	1 STRATIGRAFIA POZZO
Data Indagine:	28/04/2004
N оте:	

STRALCIO DI MAPPA CATASTALE

PARTICELLE INTERESSATE N. 117 e N. 51 FOGLIO N° 41 del N.C.T.

CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0 - 50	Sabbia limosa ocra
50 - 75	Limo exilloso jupo
75 - 80	Linio orpliso era mechiglie
80 - 10	Limo oyilloso grupo

(Provincia di Siena)

SCHEDA INDAGINE N.:

194

RIFERIMENTO PRATICA EDILIZIA:

02/0279

Località:

LOC. STAGGIA- COMUNE DI POGGIBONSI

Progetto:

PIANO DI RECUPERO "STAGGIA 5"

Numero e Tipo di Indagine:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

ALLEGATI:

1 STRATIGRAFIA POZZO

DATA INDAGINE:

28/10/1997

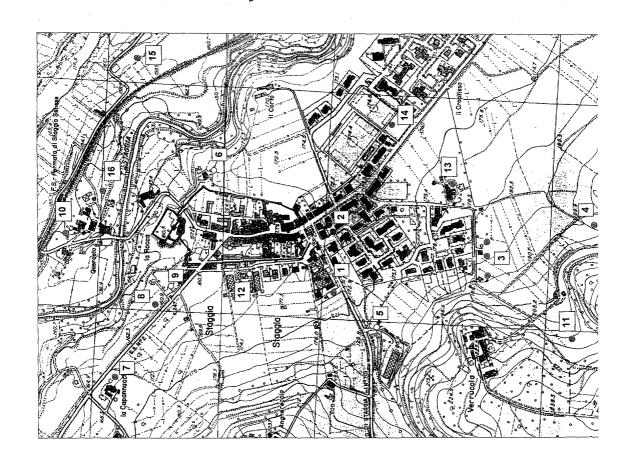
Note:

sulla corografia ubicativa la stratigrafia è identificata al n. 10

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

10

CARATTERISTICHE STRAT	GRAFICHE DELLA RICERCA
C - 16	Sabbia bimosa con livelli bloich arenaci
13 - 28	Acpillo quipiro

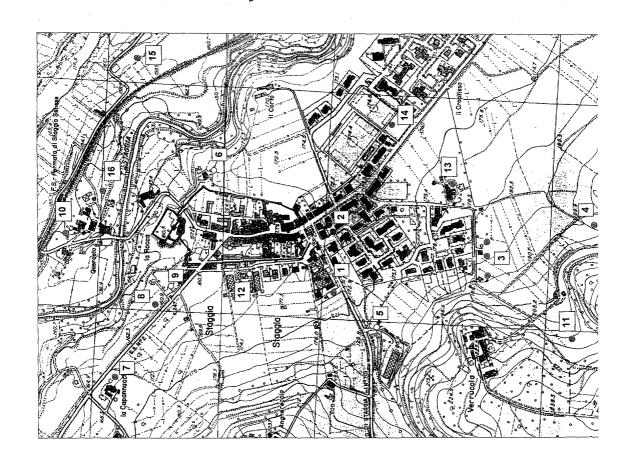
(Provincia di Siena)

SCHEDA INDAGINE N.: 195 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 STRATIGRAFIA POZZO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 16

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO

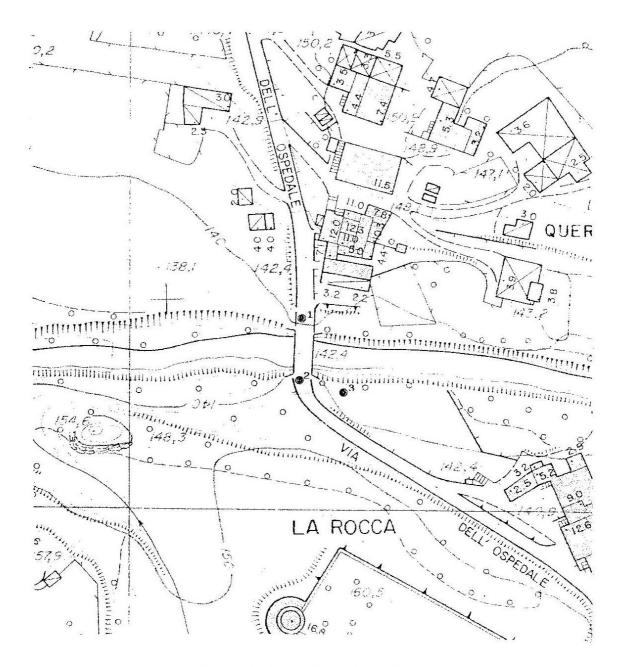

SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA


16

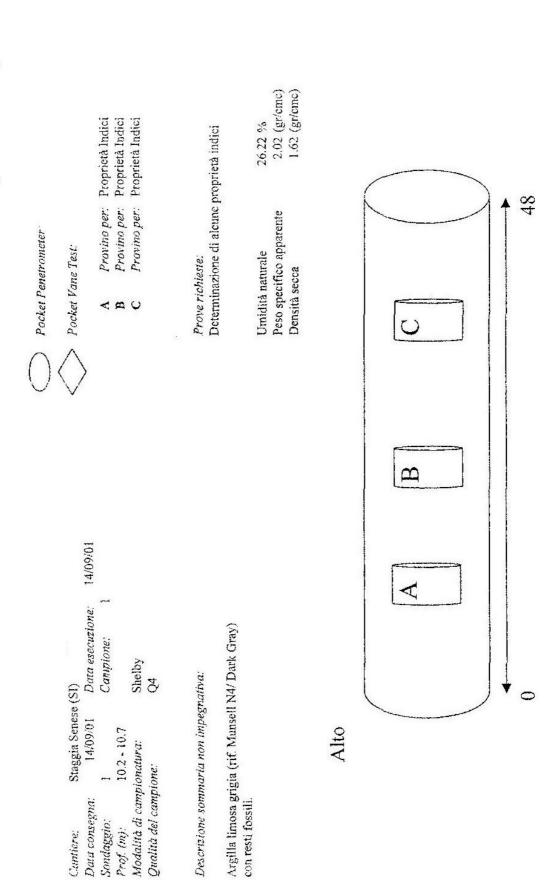
STRATIGRAFIA:

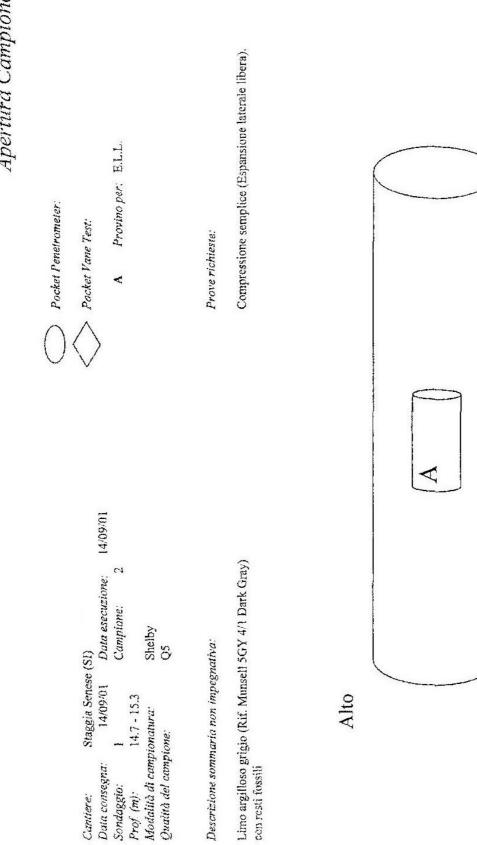
i		ITA' IN I O DI CAI		IA .	LITOLOGIA	
da	D	m. a	8	m.	52bbin Cimora	
da	8	m. a	10	m.	Debri de traversino in angille	
da	10	m. a	21	m.	Alfernación de livella liveralista -	

(Provincia di Siena)

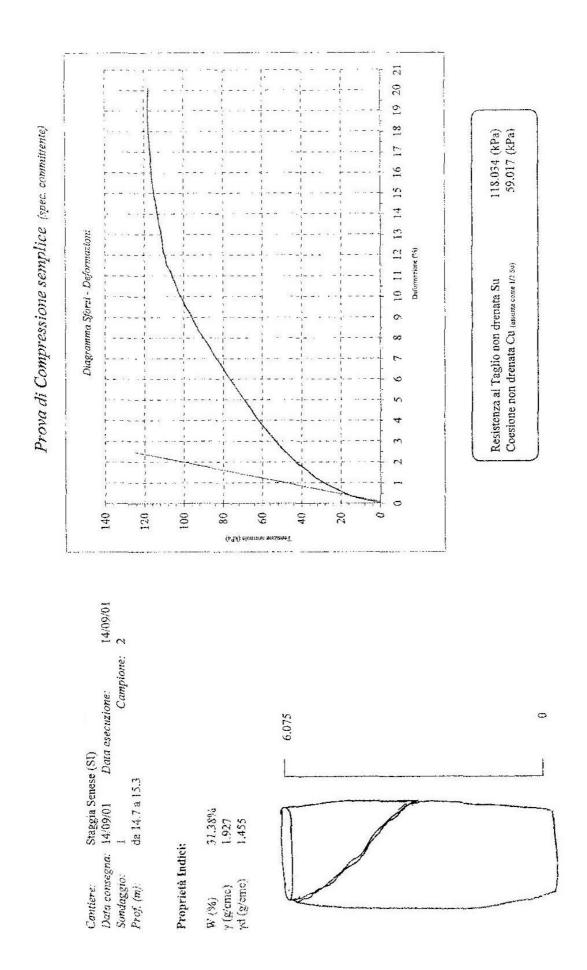
Scheda Indagine n.:	196
RIFERIMENTO PRATICA EDILIZIA:	Ufficio Lavori Pubblici
Località:	LOC. LA ROCCA – COMUNE DI POGGIBONSI
Ркодетто:	RICOSTRUZIONE DEL PONTE SUL TORRENTE STAGGIA
Numero e Tipo di Indagine:	3 carotaggi continui 12 campioni per prove di laboratorio
Allegati:	3 carotaggi continui 12 certificati di laboratorio
Data Indagine:	14/09/2001
N оте:	

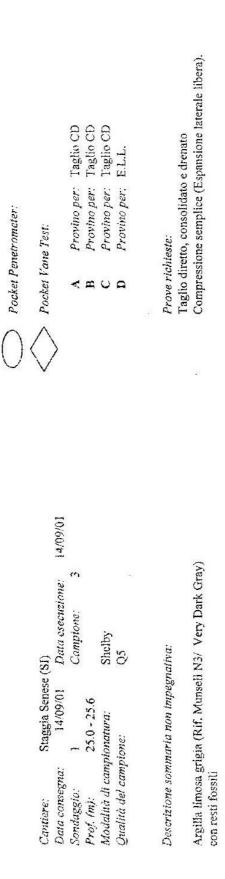
UBICAZIONE DEI SONDAGGI GEOGNOSTICI

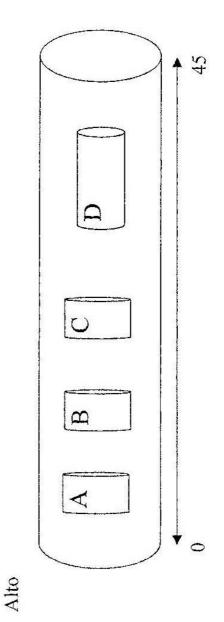

SONDAGGIO GEOGNOSTICO A CAROTAGGIO CONTINUO E RELATIVO NUMERO DI RIFERIMENTO

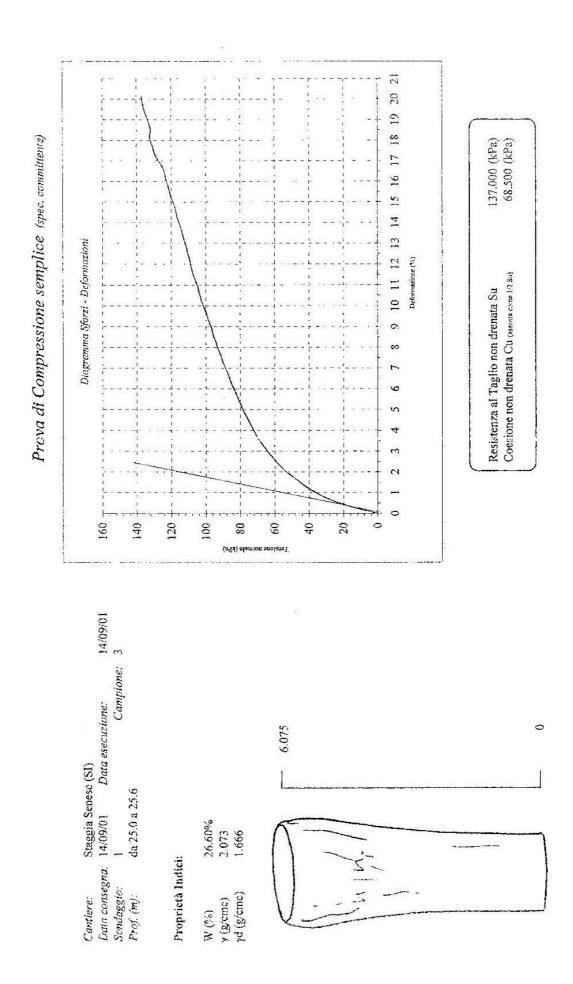

PONTE DA DEMOLIRE E RICOSTRUIRE

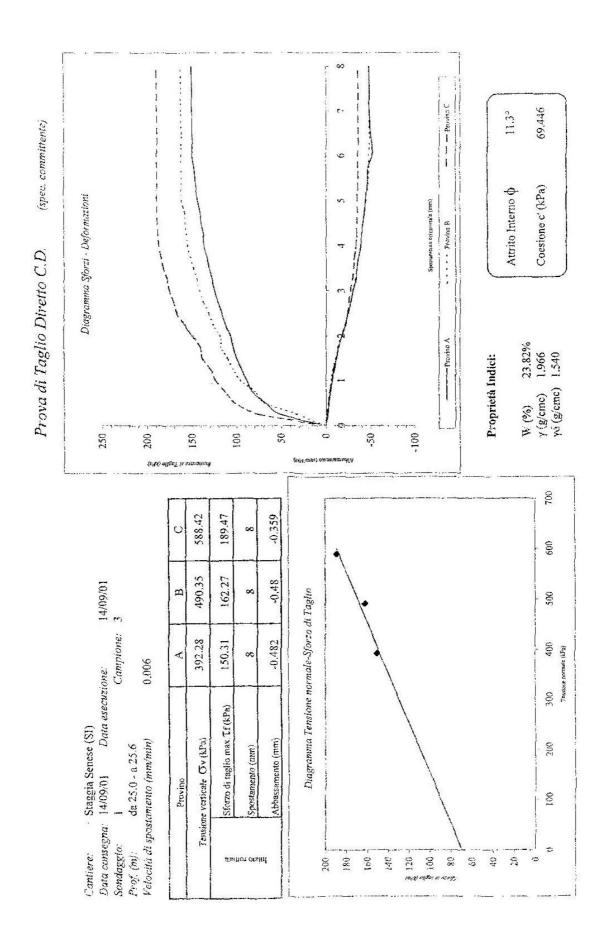
SONDAGGIO Nº: 1					QUOTA INIZIO: LOCALITA':	QUOTA INIZIO: LOCALITA': STAGGI				IA SENESE - POGGIBON	
PROFON. MT	QUOTA	STRATIG	CAMP.	PROF. CAMP.	DESCRIZIONE LITOLOGICA	%	CAROT.	S.P.T.	POKET PENETR.	SCISSO- METRO	FALD
1 2					Da mt 0,00 a mt 0,50 asfalto e massiccia stradale; da mt 0,50 a mt 1,70 terreno di riporto	ata 90	%	5-2-2 (1,20)			
3	CONTRACTOR				prevalentemente sabbioso con incluse numerose pietre e frammenti di cemente da mt 1,70 a mt 4,20 terreno di riporto	o; 80	%	3-7-3 (2,60)			TRO
5	C TO SECURITION OF THE PERSON				costituito prevalentemente da travertino recente in forma lapidea tenera, molto vacuolare e spugnoso, con frequenti vu e tratti parzialmente sabbiosi con inclusi	oti		16-12-6 (4,80)			PIEZOMETR
7	Charles of the last				lapidei e di laterizi; da mt 4,20 a mt 6,90 terreno di riporto eterogeneo in matrice sabbio-limosa;	90	%		2,30 (7,10)	1,12 (7,10)	#
9 10	1	-0					Ì		1,90 (9,30)	1,00 (9,30)	
11	1	9>	V	10,20 10,70					2,40 (11,20)	1,12	
12 13					da mt 6,90 a mt 25,00 argille grigie qua: pulite, mediamente compatte, debolmer	Si nto			(11,20)	(11,20)	
14 15	a the country of the	\$		14,70	fossilifere, di consistenza uniforme, and se progressivamente maggiore con la profondità.						
16			•	15,30	protesta.				2,10 (15,50)	0,92 (15,50)	
17 18		۵> <u> </u>							2,30 (17,70)	1,12 (17,70)	
19 20								6-8-11			
21								(19,70)	2,60 (21,10)	1,36	METRO
22 23		¢							2,60	1,36	P1E20
24									(23,00)	(23,00)	
25		93.		25,00 25,60					3,90 (24,70)	1,88 (24,70)	

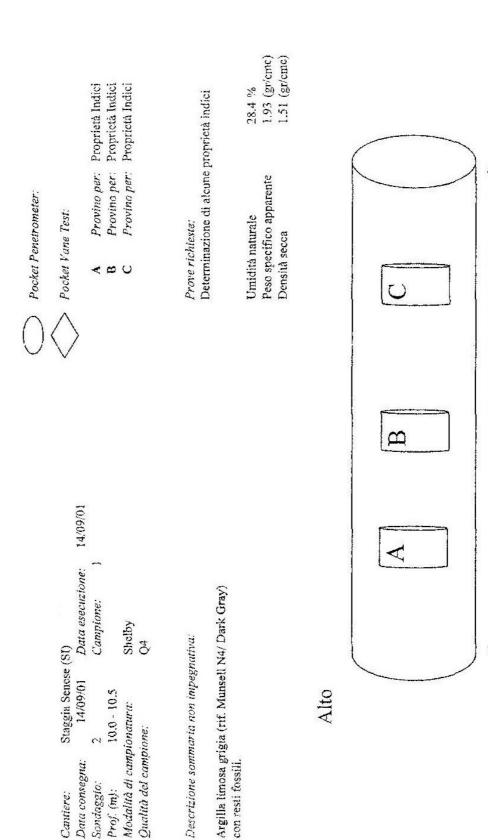

SONDAGGIO №: 2 QU					QUOTA INIZIO: LOCALITA': ST				OTAGG GGIBOI	
PROFON. MT	QUOTA	STRATIG	CAMP.	PROF.	DESCRIZIONE LITOLOGICA	% CAROT.	S.P.T.	POKET PENETR.	SCISSO- METRO	FALD
1 2 3 4 5					Da mt 0,00 a mt 0,40 asfalto e massicciata stradale; da mt 0,40 a mt 1,30 terreno di riporto prevalentemente lapideo, costituito da pietre e mattoni; da mt 1,30 a mt 7,10 terreno di riporto in matrice prevalentemente limo-sabbiosa con incluse pietre, frammenti di mattoni e blocchi di travertino;		6-11-8 (1,20) 7-7-10 (3,00)			
6 7 8					da mt 7,10 a mt 25,00 argille grigie quasi pulite, debolmente fossilifere, mediamente	90%	6-7-9 (7,00)	2,20 (7,80)	1,08 (7,80)	=
9 10 11		9	V	10,00 10,50	compatte, di consistenza uniforme, anche se progressivamente maggiore con la profondità.			2,40 (10,00)	1,16 (10,00)	
12 13				13,20				3,00 (12,00)	1,44 (12,00)	
14 15 16		•	 	13,70				1,90 (15,00)	0,92 (15,00)	
17 18		•	•	16,50				2,10 (17,10)	1,00 (17,10)	
19 20			•	20,00				2,50 (20,00)	1,36 (20,00)	
21 22 23		**************************************						3,30 (22,00)	1,60 (22,00)	
24 25		0	V	24,50 25,00			5-10-18 (25,00)	4,70 (24,00)	2,40 (24,00)	

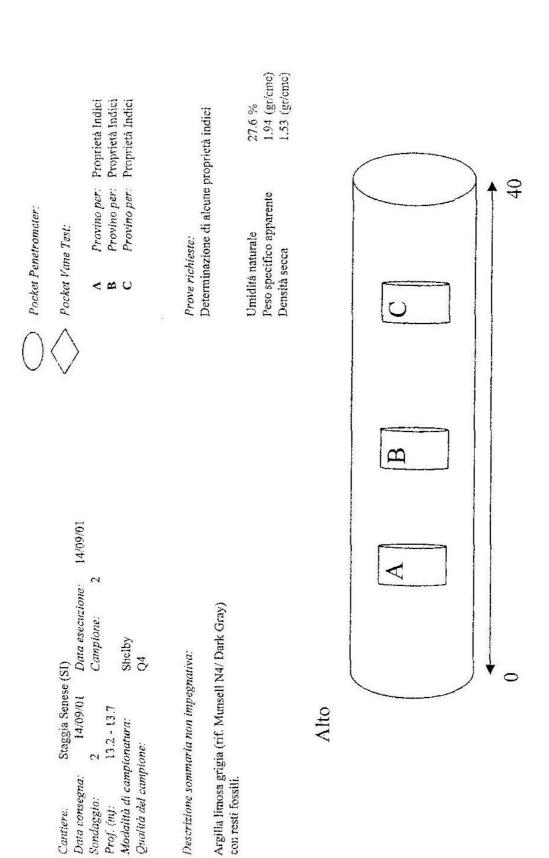

SOND	AGGIO №:	3	_	QUOTA INIZIO: LOCALITA': S	TAGG	IA SENE	SE - POO	GIBO	ISI
PROFON. MT	STRATIC	CAMP.	PROF. CAMP.	DESCRIZIONE LITOLOGICA	% CAROT.	S.P.T.	POKET PENETR.	SCISSO- METRO	FALD.
1 2 3 4				Da mt 0,00 a mt 1,00 suolo pedologico prevalentemente sabbioso; da mt 1,00 a mt 3,90 sabbie limose di origine alluvionale color nocciola con inclus frequenti ciottoli per lo più calcarei di dimensioni centimetriche e decimetriche; da mt 3,90 a mt 4,35 sabbie grossolane grigie sature con numerosi frammenti di		7-15-11 (1,50)	1,50	0,80	=
6		-	5,50 6,00	fossili;			(4,60)	(4,60)	
7	©:		0,00	da mt 4,35 a mt 20,00 argille grigie quasi pulite, mediamente compatte, debolmente fossilifere, di consistenza uniforme, anche		4-7-11 (7,50)	2,30 (6,70)	1,24 (6,70)	
9				se progressivamente maggiore con la profondità. A mt 16,60 è presente un livello	90%	(1,50)	3,00	1,44	
10				fossilifero consistente.			(9,00)	(9,00)	
11		L	11,00						
12		•	11,50					1,12	
13						6-9-10	0.70	(12,30)	
14			44.50			(12,70)	2,70 (13,50)	1,48 (13,50)	
15		V	14,50 15,00						
16							2,60 (15,80)	1,24 (15,80)	
17						11-16-20 (17,00)			
18							3,20 (18,00)	1,60 (18,00)	
19			20,00				5,50		
20		V	20,50				(19,80)		
22									
23									
24									
25									

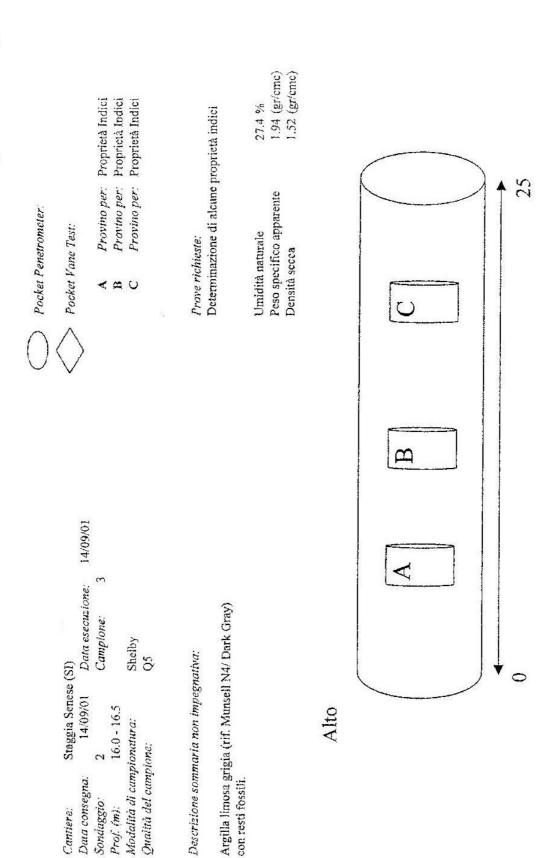


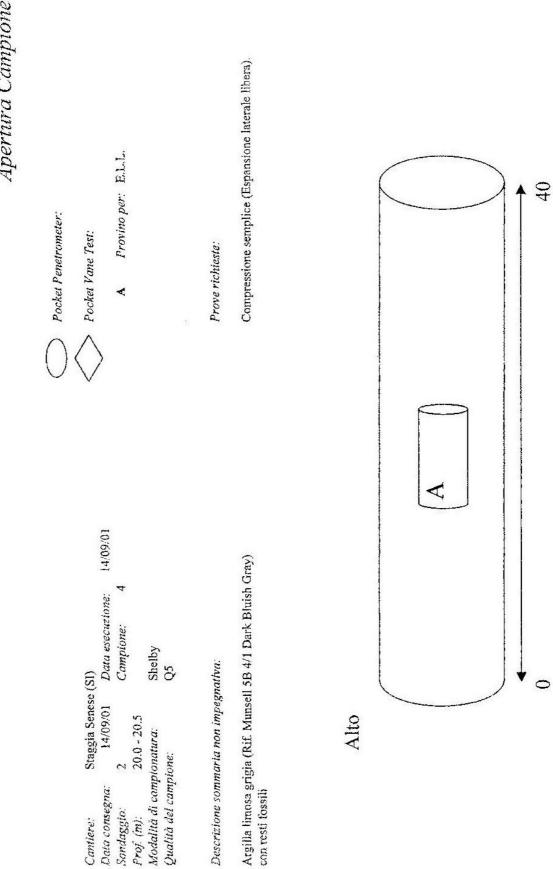


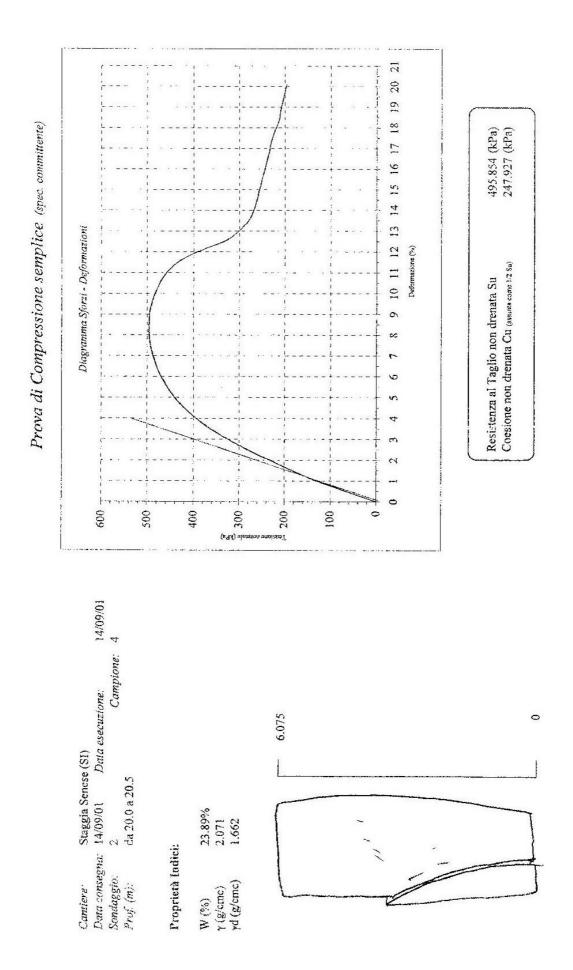

40





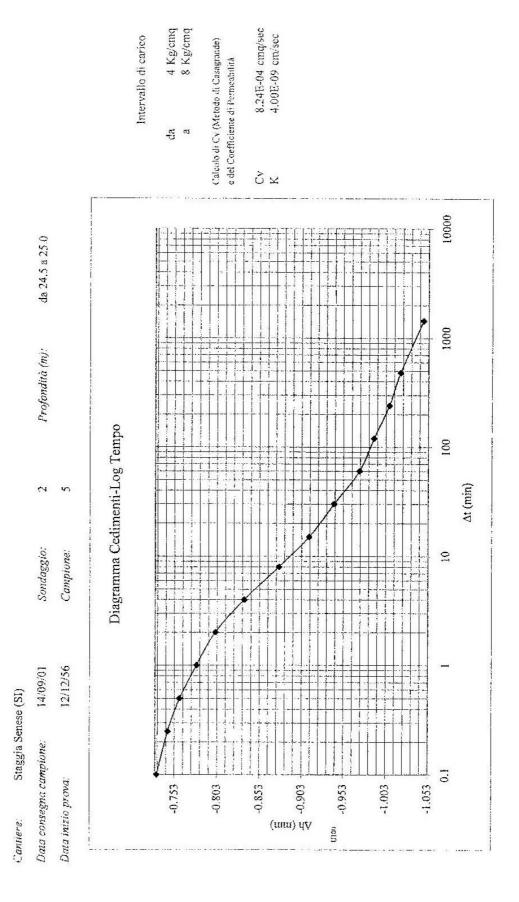


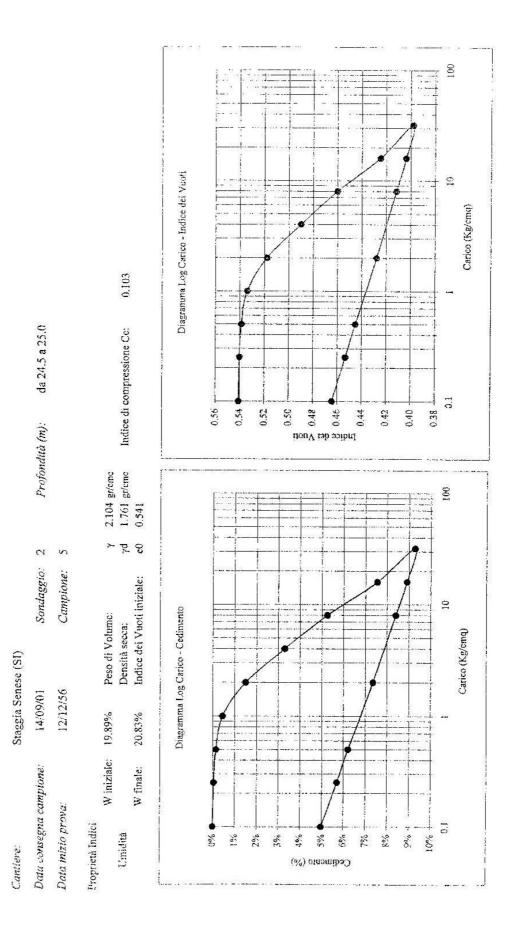




38

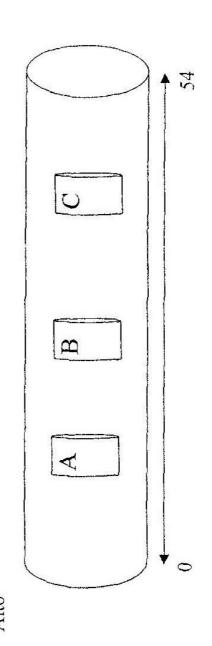






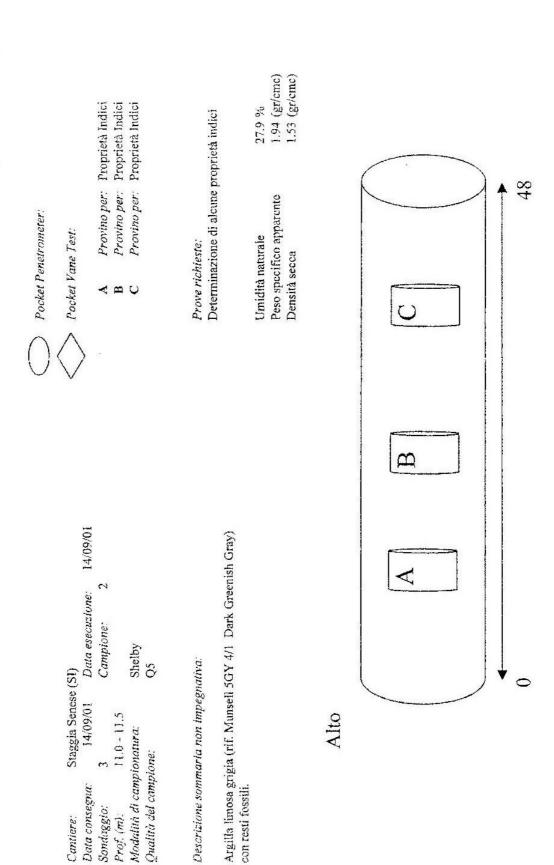
(cmq/Kg) (Kg/cmq) (cmq/Kg) 0.031744 0.074479 0.0075 0.0017 0.0010 0.0117 0.0044 0.0027 0.0004 166.667 205.656 347.072 927.536 500,000 250.000 0.0020 0.0040 0.04975 | 0.464286 | 0.048333 0,0060 0.0090 0.0049 0.0029 0.0011 0.0206 0.0105 0.0002 900000 0.0076 0.0017 0.453114 0.425 0.445 0.540 0.518 0.490 0,460 0.398 0.404 0.412 0.428 o 🛈 0.0015 0.0150 0.0330 0.0755 0.0928 0.0890 AH/H0 0.0005 0.0045 0.0525 0.0840 0.0735 0.0622 0.057 0.1049 0.1855 0.1679 0.1243 0.0995 0.114 0.009 0.066 0.151 0.178 0.147 0.001 0.003 AH (cm) 0.03 0.25 16 32 0 (Kg/cmq) > b 0.25 16 32 16 100 Diagramma Log Carico - Log. Modulo Edometrico 01 Carico (Kg/cmq) C 0 100 Module Edometrico (Eglenq)

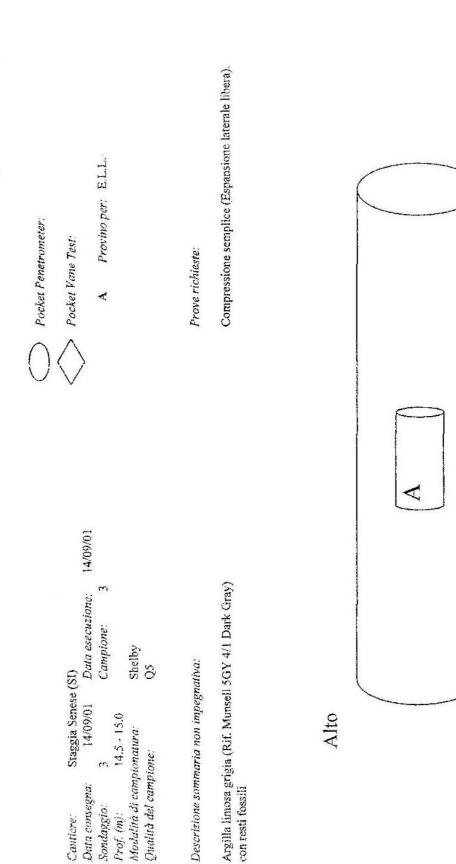
C



Pocket Penetrometer:	Pocket Vane Test:	A Provino per: Proprietà Indíci	B Provino per: Proprietà Indici	C Provino per: Proprietà Indici
	(SI) Data execuzione: 14/09/01	_		Shelby Q5
	Staggia Senesc 14/09/01	3	5.5 - 6.0	ionatura: ione:
	Cantiere: Data conseena:	ondaggio.	oref. (m);	Modalità di campionatura: Qualità del campione:

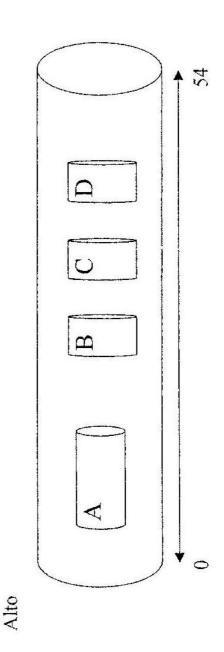
Determinazione di alcune proprietà indici

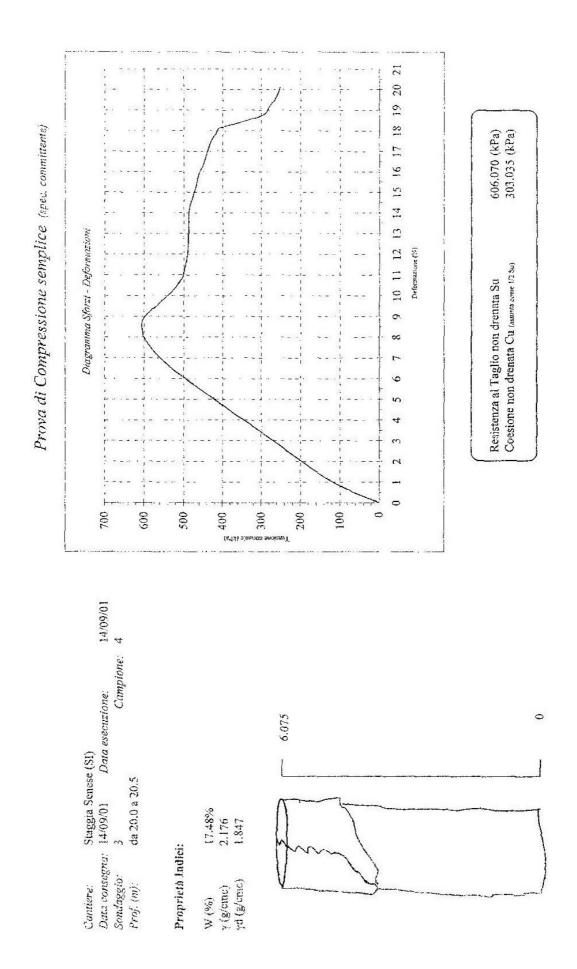

Umidità naturale
Peso specifico apparente
1.98 (gr/cmc)
Densità secca
1.6 (gr/cmc)

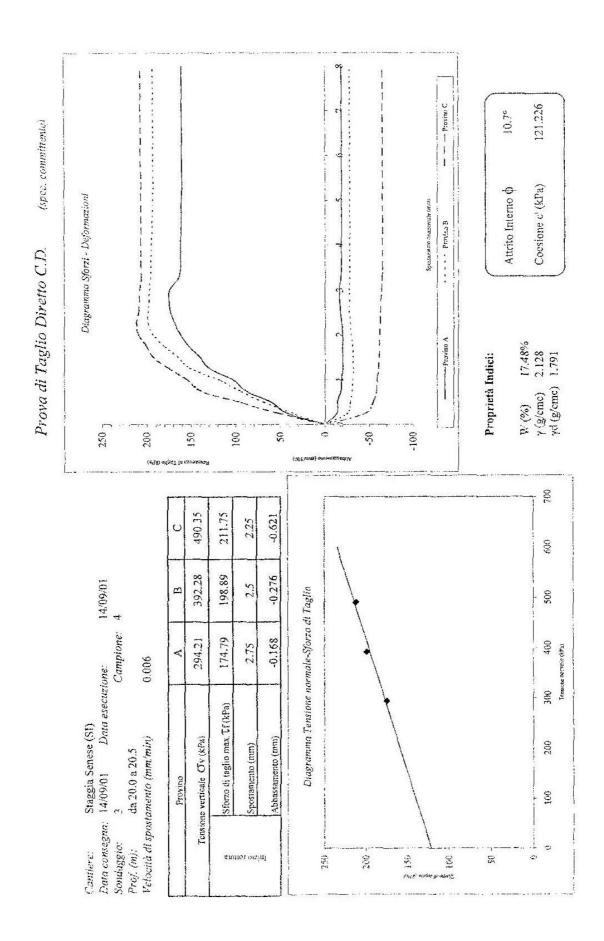

Prove richieste.



Argilla imosa grigia (rif. Munsell N4/ Dark Gray) con resti fossili.


Descrizione sommaria non impegnativa:





Compressione semplice (Espansione laterale libera). Taglio CD Taglio CD Taglio CD E.L.L. Taglio diretto, consolidato drenato Provino per: Provino per: Provino per: Provino per: Pocket Penetrometer: Pocket Vane Test: Prove richieste: Data esecuzione: 14/09/01 Argilla limosa grigia (Rif. Munsell 5BG 4/1 Dark Greenish Gray) on resti fossili Campione: Shelby Descrizione sommaria non impegnativa: Staggia Senese (SI) 14/09/01 20.0 - 20.5 Modalità di campionatura: Qualità del campione: Data consegna: Sondaggio. Prof. (mj. Cantiere:

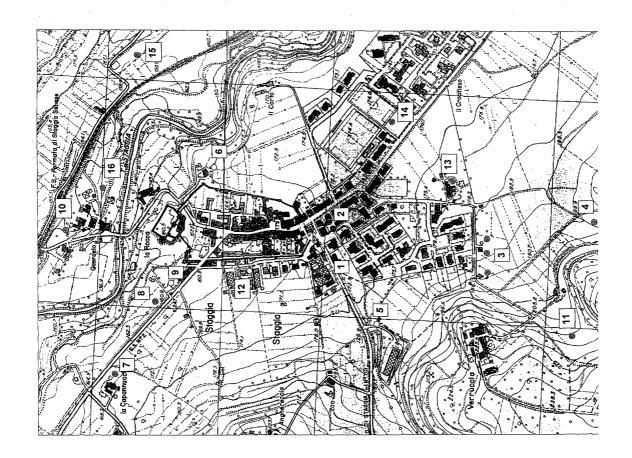
Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.: 197 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 STRATIGRAFIA POZZO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 7

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA


SONDAGGIO GEOGNOSTICO

PERFORAZIONE POZZO PER ACQUA

SAGGIO GEOGNOSTICO 0

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

07 CARATTERISTICHE	E STRATIGRAFICHE DELLA RICERCA
Profondita' dal P.C.	Descrizione litologica
0 - 27	Sabbia calcarea ocra com detuti.
27 - 29	Ayilla

Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.:

198

RIFERIMENTO PRATICA EDILIZIA:

02/0279

Località:

LOC. STAGGIA- COMUNE DI POGGIBONSI

Progetto:

PIANO DI RECUPERO "STAGGIA 5"

Numero e Tipo di Indagine:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

ALLEGATI:

1 STRATIGRAFIA POZZO

DATA INDAGINE:

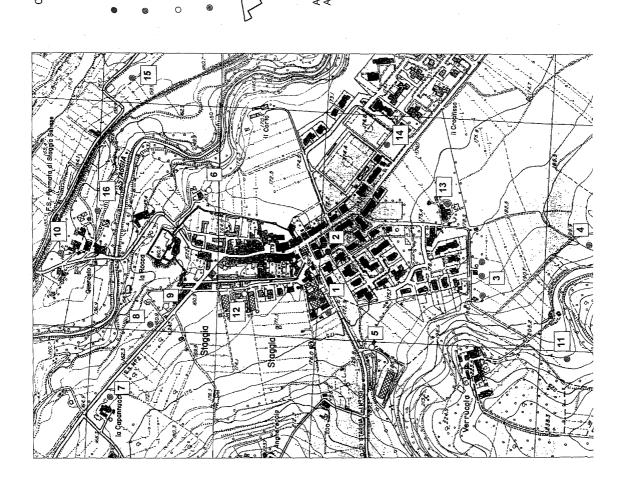
16710/1995

Note:

sulla corografia ubicativa la stratigrafia è identificata al n. 8

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA DELL'AREA DI INDAGINE

PROVA PENETROMETRICA


SONDAGGIO GEOGNOSTICO

SAGGIO GEOGNOSTICO

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

0 8

CARATTERISTICHE STRAT	IGRAFICHE DELLA RICERCA
0 - 14	Livelli alternati oli travertino più e meno compatto
14-16	Ghidia sabbiosa
16 - 23	Argilla.

Comune di Poggibonsi

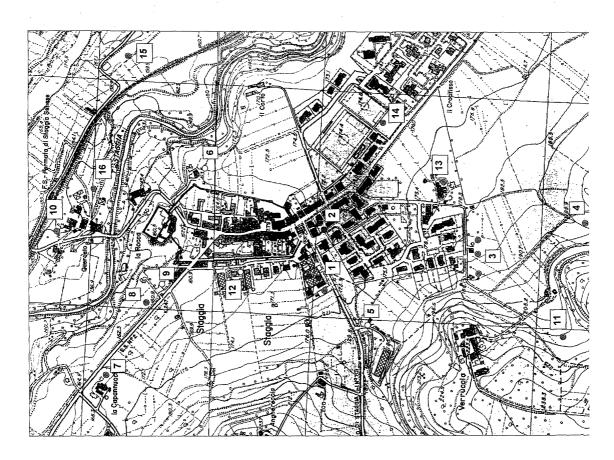
(Provincia di Siena)

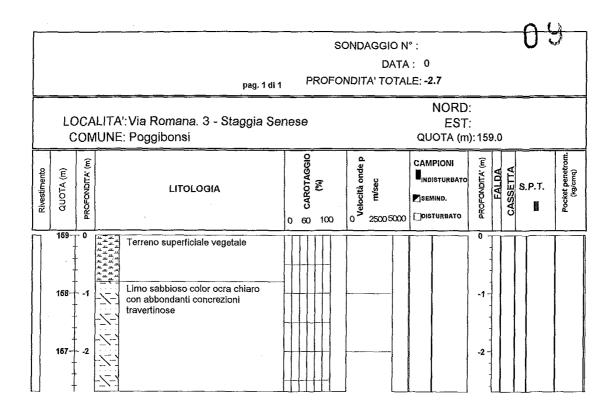
SCHEDA INDAGINE N.: 199 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 SAGGIO GEOGNOSTICO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 9

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO


0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

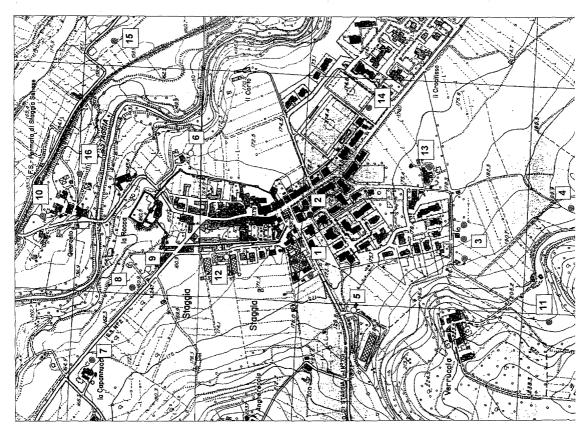
AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

(Provincia di Siena)

SCHEDA INDAGINE N.: 200 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 STRATIGRAFIA POZZO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 15

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA


SONDAGGIO GEOGNOSTICO

SAGGIO GEOGNOSTICO

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

15

STRATIGRAFIA:

1	DFONDI L PIANO		METRI MPAGNA	4	LITOLOGIA
da	0	m. a	4	m.	Teneno apine
da	Ź	m. a	7,50	m.	Sobbia Cuora
da	7,50	m. a	11	m.	hylle mupth.
da	lt	m. a	25	m.	Sylla solhiora

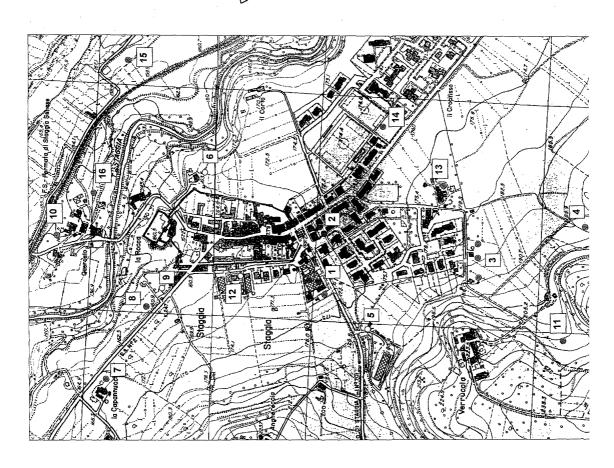
(Provincia di Siena)

SCHEDA INDAGINE N.: 201 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 SAGGIO GEOGNOSTICO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 6

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

																		e G	
								sc	NDA	١GG	O N	°:					O	. 6	
			DATA: 0 PROFONDITA' TOTALE: -3.8																
			pag. 1 dl 1		F	PR()F	٥١ 	IDIT	A' T(OTAI	`E: -3	1.8						
													NORD						
	LOCALITA': Via dell'Ospedale - Staggia Senese EST: COMUNE: Poggibonsi QUOTA (m):164.00																		
		T		_	0	_			Ω.			T	PIONI		П	_		É	_
ento	E	PROFONDITA' (m)	·		CAROTAGGIO	-			onde	Ų		1 _	PIUNI ISTURBATO	PROFONDITA' (m)	FALDA	¥		enetro	(kg/cmq)
Rivestimento	QUOTA (m)	FOND	LITOLOGIA		ARO	8	•		ocità	m/sec		 SEℓ		POND	FA	SSE	S.P.1	r. a	8
ά	a	80		0	60		100		O Velocità onde p	2500	5000	□]ois	TURBATO	P.		S	PH4	8	:
7	164-	0	Terreno vegetale	Т	П						T			0		寸	7	\vdash	=
	_		7	4	\parallel	1	Ц								1				
	163-	1	Limo debolmente sabbioso travertinoso, marrone rossiccio	T	Ħ									-1-					
	-	-	Lavoranoso, mariono rossicolo	+	H	-	Н												
1	162	2				\perp	Ц	ļ						-2 -		İ	1	-	
	_		-Z-																
	-				\parallel		Н												
	161-	3	<u></u>	+	\dashv	+	Н.			,	-			-3 -					
			<u></u>																
	-	-	-\[-\]	Ţ	\prod			_]											

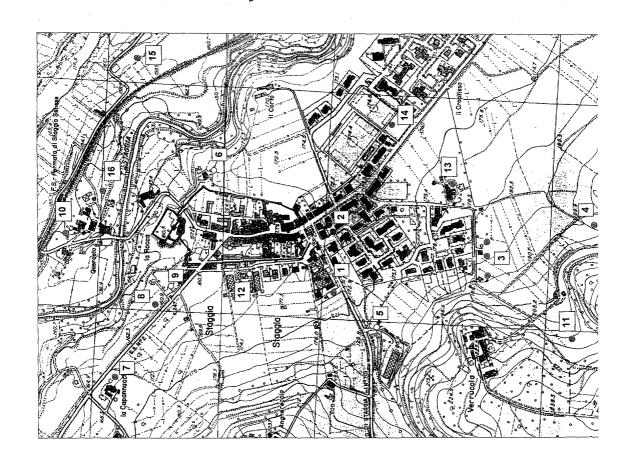
(Provincia di Siena)

SCHEDA INDAGINE N.: 202 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 SAGGIO GEOGNOSTICO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 12

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

	,		SONDAGGIO N° : 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
			LITA':Via XXV Aprile - Staggia Ser UNE: Poggibonsi	nese		NORD: EST: QUOTA (m)		1.00						
Rivestimento	QUOTA (m)	PROFONDITA' (m)	LITOLOGIA	O 8 CAROTAGGIO DI (%)	o velocità onde processor velocità onde processor velocità onde processor velocità de processor velocità de processor velocità onde processor velocità de	CAMPIONI INDISTURBATO SEMIND. DISTURBATO	PROFONDITA' (m)	CASSETTA	S.P.T.	Pocket penetrom. (kg/cmq)				
	166	1	Terreno di riporto Limo debolmente sabbioso travertinoso, marrone rossiccio				0 - - - -1 -							

(Provincia di Siena)

SCHEDA INDAGINE N.:

203

RIFERIMENTO PRATICA EDILIZIA:

04/0476

Località:

LOC. STAGGIA - COMUNE DI POGGIBONSI

Progetto:

COSTRUZIONE DI FABBRICATO RESIDENZIALE

Numero e Tipo di Indagine:

1 CAROTAGGIO CONTINUO

1 PROVA PENETROMETRICA CPT

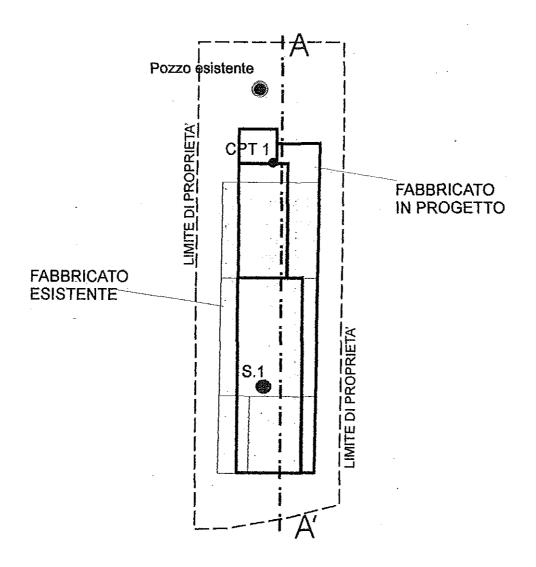
3 CAMPIONI PER PROVE DI LABORATORIO

ALLEGATI:

1 CAROTAGGIO CONTINUO

1 CERTIFICATO DI LABORATORIO

1 CERTIFICATO PROVA CPT


DATA INDAGINE:

04/07/2003

NOTE:

sulla relazione è riportato il certificato di un solo campione

Planimetria nello stato sovrapposto con il Sondaggio S1, la prova penetrometrica (CPT1) e la traccia di sezione A-A'

Stratigrafia del Sondaggio 1

	04000	C 1	Lea (Charaia Daggilhana) (CI)	do ndo
	data 2/12/03	S. 1 CAMPIONI	Loc. ;Staggia - Poggibonsi (SI)	da pdc
m.	1	CAMILION	<u> </u>	pocket
0,3	++++++	<u> </u>	Cls e inerti del solaio	1 .
	~ ~ ~ ~		Limi sabbiosi rosso-mattone e marrone, con	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0,6	<u> ∧3.44 ~3.</u>		clasti eterogenei, millimetrici : riporto	
1	2.2.2.2.		Limi sabbiosi e argillosi, rosso cupo e marrone, con	rif
			micro-inclusi carbonatici, compatti.	rif
1,6	0.54	ļ		4,5
	2000		Breccia calcarea (travertino) ad elementi millimetrici, in matrice limo-sabbiosa rossastra e ocracea.	3,5
2	4. 0 - 0		in manice imo-sappiosa rossastra e ocracea.	1,6
	0.0	S1C1		2,0
2,5	4 0 5		Danash adlama (Assiration) is matrice line patrice	2,0
	20.000		Breccia calcarea (travertino), in matrice limo-sabbiosa	0,5
3	0.0000	S1C2	ocra-biancastra, satura.	1,2
3,5	200			0,8
	~ ~ ~	:	Limi argillosi marrone e nerastri, con torba; plastici.	0,7
3.7	~ ~ ~		Sabble calcaree, medio-grosse, di colore grigio-nocciola	1,7
*	0 00	C1C2	e brecce calcaree, di colore ocra-rossastre, a scarsa	
	.00 000	S1C3	consistenza, con livelli plastici (3,7/4,0 e 5,4/5,7)	1,0
	· · · · · ·		con livelli a matrice limo-argillosa; asciutte.	0,5
5	3.0-000		con iveni a manice iimo-arginosa, ascidite.	1,0
	0,0			1,0
	8 6 Pop 0			
	3 5 3 5 5		·	
6	1 - X			0,7
7.51	~ ~ ~ ~			1
				1
	7,300			1
7	200			1
	~~~			1
7,5	000	•		1
	**************************************		Argille sabbiose ocracee e grigie, con brecce calcaree,	0,6
8,1	0		plastiche	0,2
	9.0,000		Sabbie calcaree, medio-grosse, di colore grigio-nocciola	1
8,6	10,000		e brecce calcaree, a scarsa consistenza.	1 1
			Sabbie calcaree fini, di colore biancastro, stratificate;	1
9	型产品		contenenti livelli decimetrici di travertino fitoclastico	
9,1	\$35888458K		cementato; umide.	\ \
	15.000	<del></del>	Sabble calcaree fini e finissime, di colore biancastro,	1,2
	[8000000]		sature	1
10	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			1,0
			Sabble fini e sabble argillose, di colore grigio, sature	1,0
			•	1,2
	1883 <del>- 1883 -</del>			1,1
11				<u>-</u> -
11,3	1.50000000		Outside that all anima guiden manadan and through all tarks	1,2
44.0	inter a		Sabble fini di colore grigio-nerastro, con livelli di torba,	2,6
11,6			asciutte, a media compattezza, fragili alia punzonatura.	2,7

# Apertura Campione (Racc. AGI 1977)

Pocket Penetrometer: Pocket Vane Test:

Data esecuzione: 01/05/2004

29/03/2004

Data consegna: Sondaggio: Prof. (m):

Cantiere:

Campione:

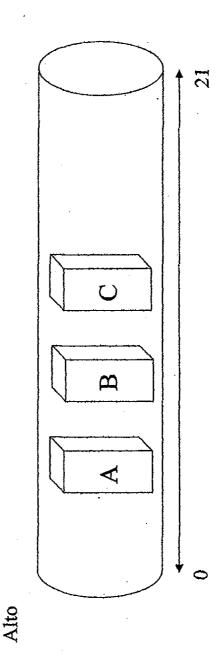
da 2.60 a 3.20

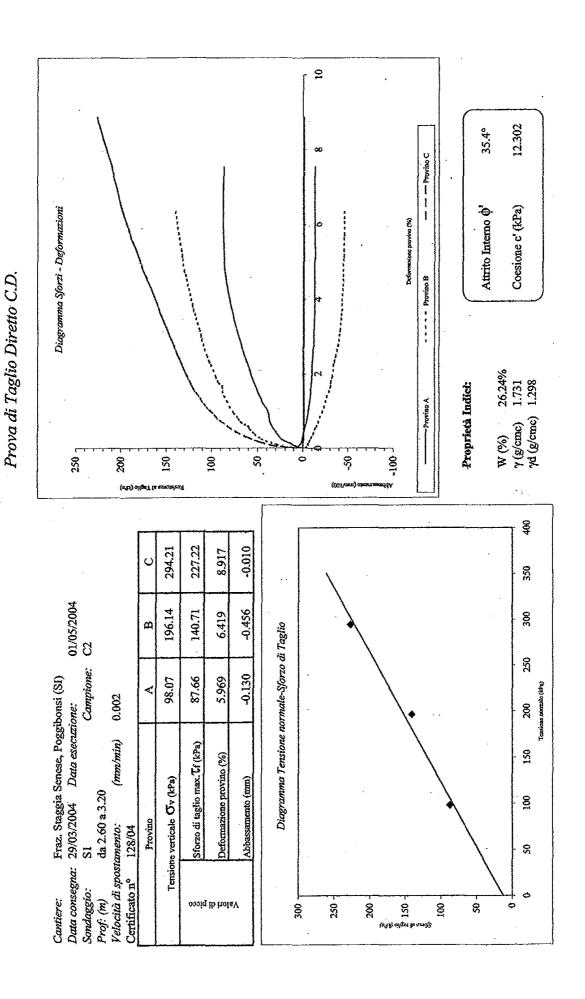
Modalità di campionatura:

Qualità del campione:

Fraz. Staggia Senese, Poggibonsi (SI)

Spezzone di carotaggio Q4


Provino per: Taglio CD
Provino per: Taglio CD
Provino per: Taglio CD A M U


Taglio diretto, consolidato drenato. Prove richieste:

Descrizione sommaria non impegnativa:

(Rif. Munsell 10YR4/6 Dark Yellowish Brown) Travertino alterato marrone chiaro

(Rif. Munsell 10YR4/3 Brown) a tratti argilloso e bruno



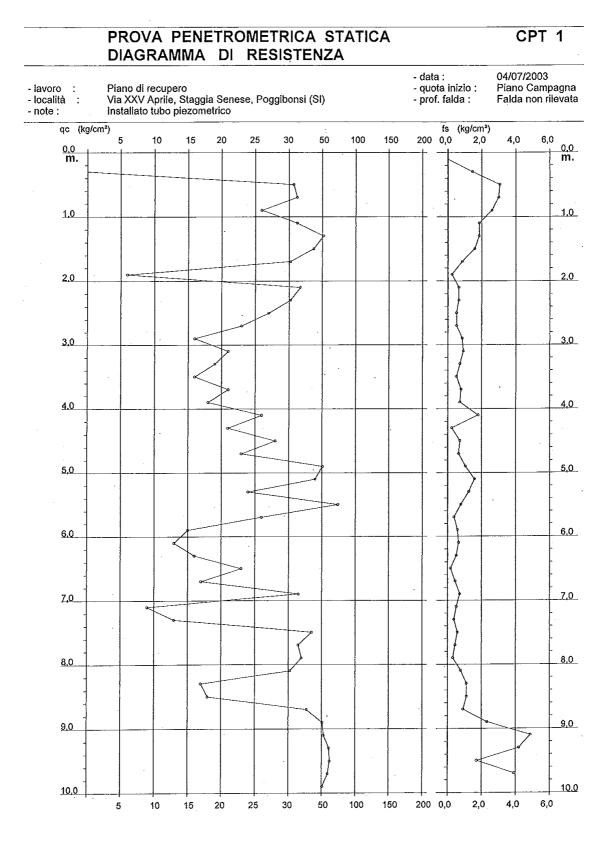


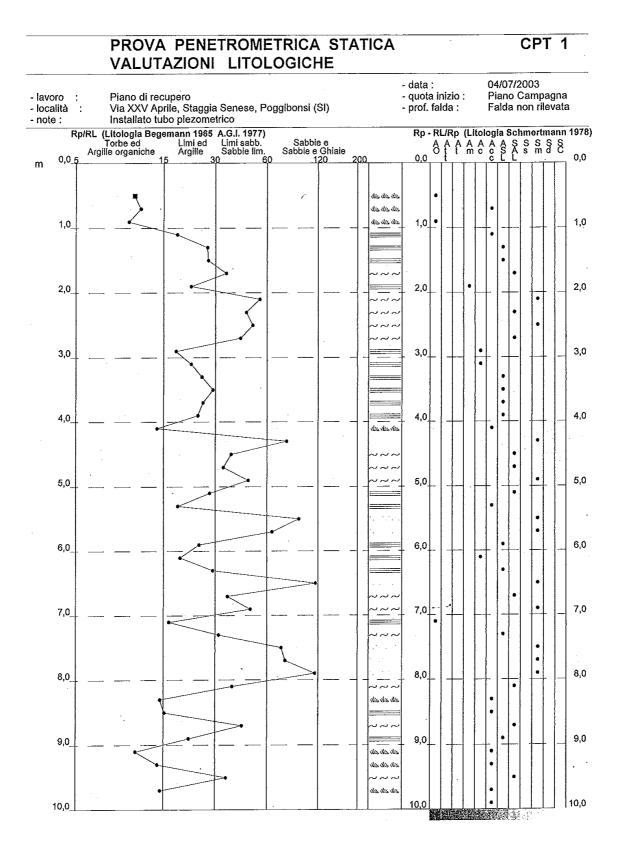
# PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

04/07/2003

CPT 1

- data : Piano di recupero Via XXV Aprile, Staggia Senese, Poggibonsi (SI) Installato tubo piezometrico - quota inizio : - prof. falda : - lavoro : - località : - note ; Piano Campagna Falda non rilevata - pagina :


Prof. m	Letture o	li campagna laterale	a qc k	fs g/cm²	qc/fs		Prof. m	Letture punta	di campagr laterale		fs kg/cm²	qc/fs
0,20						1	5,20	46,0	62,0	46,0	1,60	29,0
0,40				1,47			5,40	24,0	48,0	24,0	1,27	19,0
0,60	33,0	55,0	33,0	3,07	11,0		5,60	74,0	93,0	74,0	0,80	92,0
0,80	35,0	81,0	35,0	3,00	12,0		5,80	26,0	38,0	26,0	0,40	65,0
1,00	26,0	71,0	26,0	2,60	10,0		6,00	15,0	21,0	15,0	0,60	25,0
1,20	35,0	74,0	35,0	1,87	19,0		6,20	13,0	22,0	13,0	0,67	19,0
1,40	52,0	80,0	52,0	1,87	28,0		6,40	16,0	26,0	16,0	0,53	30,0
1,60	45,0	73,0	45,0	1,60	28,0		6,60	23,0	31,0	23,0	0,20	115,0
1,80	31,0	55,0	31,0	0,87	36,0		6,80	17,0	20,0	17,0	0,47	36,0
2,00	6,0	19,0	6,0	0,27	22,0		7,00	36,0	43,0	36,0	0,73	49,0
2,20	37,0	41,0	37,0	0,67	55,0		7,20	9,0	20,0	9,0	0,53	17,0
2,40	31,0	41,0	31,0	0,67	46,0	- 1	7,40	13,0	21,0	13,0	0,40	32,0
2,60	27,0	37,0	27,0	0,53	51,0	- 1	7,60	44,0	50,0	44,0	0,60	73,0
2,80	23,0	31,0	23,0	0,53	43,0		7,80	36,0	45,0	36,0	0,47	77,0
3,00	16,0	24,0	16,0	0,87	18,0	- ;	8,00	38,0	45,0	38,0	0,33	114,0
3,20	21,0	34,0	21,0	0,93	22,0		8,20	31,0	36,0	31,0	0,80	39,0
3,40	19,0	33,0	19,0	0,73	26,0	-   - ;	8,40	17,0	29,0	17,0	1,13	15,0
3,60	16,0	27,0	16,0	0,53	30,0	1.	8,60	18,0	35,0	18,0	1,13	16,0
3,80	21,0	29,0	21,0	0,80	26,0	1	8,80	41,0	58,0	41,0	0,93	44,0
4,00	18,0	30,0	18,0	0,73	25,0		9,00	51,0	65,0	51,0	2,33	22,0
4,20	26,0	37,0	26,0	1,80	14,0		9,20	53,0	0,88	53,0	4,87	11,0
4,40	21,0	48,0	21,0	0,27	79,0		9,40	61,0	134,0	61,0	4,20	15,0
4,60	28,0	32,0	28,0	0,73	38,0		9,60	62,0	125,0	62,0	1,73	36,0
4,80	23,0	34,0	23,0	0,67	34,0		9,80	59,0	85,0	59,0	3,93	15,0
5,00	51,0	61,0	51,0	1,07	48,0	1	0,00	51,0	110,0	51,0		


# PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

- lavoro : - località :	Piano di recupero Via XXV Aprile, Staggia Senese, Poggibonsi (SI)	- data : - quota inizio ; - prof. falda :	04/07/2003 Piano Campagna Falda non rilevata
" localita .		" prot. iaida .	I alua non movata
- note ·	Installato tuho niezometrico	- nagina '	1

note :	In	stallate	o tut	oo pie	zome								_ pag	jina :			1		
					NAT	URA	COES	IVA					IAT L	RAK	3RA	WULL	AREL		
Prof. m	qc qc/fs kg/cm² (-)		Y Um³	dvo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/c		Mo kg/cm²	Dr %	ø1s (*)	ø2s (*)	ø3s (*)	ø4s (°)	ødm (°)	ømy (*)	Amax/g (-)	E:50 kg/c	E'25 Mo cm² kg/cm²
0,20 0.40		???	1,85 1,85	0,04 0,07			-			Ξ	-			=		-	=		<u> </u>
0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,20	33 11 35 12 26 10 35 19 52 28 45 28 31 36 6 22 37 55	41:1: 41:1: 41:1: 41:1: 41:1: 41:1: 3:::: 21///	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0,11 0,15 0,19 0,22 0,26 0,30 0,33 0,37 0,41	1,10 1,17 0,93 1,17 1,73 1,50 0,30	99,9 82,9 47,2 50,0 67,6 47,7 4,8	187 198 158 198 295 255 103	281 298 237 298 442 383	99 105 78 105 156 135	88 83 67 73 82 74 59 	40 40 37 38 40 38 36 	42 41 39 40 41 40 38	43 41 42 43 42 40 41	45 43 44 45 44 43 	42 41 39 39 40 39 37 36	29 28 29 31 31 29 -	0,215 0,198 0,150 0,167 0,198 0,172 0,127	55 58 43 58 87 75 52 	83 99 88 105 65 78 88 105 130 156 113 135 78 93
240	31 46 27 51 23 43 16 18	3::::	1.65	0.48	 	-		-	=	52 45 38	35 34 33	37 37 36	40 39 38	42 42 41	36 35 34 32	29 28 28	0,108 0,091 0,074	<i>52</i> 45 38	78 93 68 81 58 69
2,60 2,80 3,00 3,20 3,40 3,60 3,80	21 22 19 26 16 30	2/// 4/:/: 2//// 4/:/:	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0,52 0,55 0,59 0,63 0,67	0,70 0,82 0,78 0,70	8,3 9,5 8,2 6,6	132 142 150 170	198 213 225 256	52 63 58 52 63	31 - 19	32 31	35 34	38 - 36	40 40	31	27	0,060	35 27	53 63 —
3,80 4,00 4,20 4,40 4,60 4,80	21 26 18 25 26 14 21 79	41:1: 21111 41:1: 3::::	1,85 1,85 1,85 1,85	0,67 0,70 0,74 0,78 0,81	0,82 0,75 0,93	7,7 6,4 7,8	171 192 188	256 288 281	63 56 78	27 32 23	32 32 31	34 35 34	37 38 37	40 41 40	30 31 29	27 28 27	0,052 0,062 0,044	35 43 35 47	53 63 65 78 53 63
5,00 5,20 5,40 5,60 5,80	21 79 28 38 23 34 51 48 46 29 24 19 74 65 15 25 13 19	3:::: 3:::: 4/./: 4/./: 3:::: 3:::: 2////	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0,81 0,85 0,89 0,93 0,96 1,00 1,04 1,07	1,53 0,89	11,2	261 272 	391 407 	138 72 	23 32 24 51 46 23 61 24	33 31 35 34 31 37 31	34 35 34 37 37 34 39 34	37 38 37 40 39 37 41 37	41 40 42 42 40 43 40	31 29 34 33 29 35 29	28 28 31 31 28 32 28	0,062 0,046 0,106 0,095 0,044 0,133 0,046	47 38 85 77 40 123 43	70 84 58 69 128 153 115 138 60 72 185 222 65 78
6,00 6,20 6,40 6,60 6,80 7,00 7,20	13 19 16 30 23 115 17 36 36 49 9 17	2//// 4/:: 3::: 4/:/: 3::::	1,85 1,85 1,85 1,85 1,85 1,85	1,15 1,18 1,22 1,26 1,30	0,60 0,70 0,72	3,3 2,8 3,2 3,1	307 330  348	460 495 523 390	47 52 54	5 17 5 31	29 30 29 32	32 33 32 35	35 36 35 38	38 39 38 40	26 28 26 30	27 28 27 30	0,012 0,032 0,013 0,059	27 38 28 60	40 48 58 69 43 51 90 108
7,40 7,60 7,80 8,00 8,20 8,40	13 32 44 73 36 77 38 114 31 39 17 15	3:::: 3:::: 3:::: 3::::	1,85 1,85 1,85 1,85	1,33 1,37 1,41 1,44 1,48 1,52 1,55 1,59	0,45 0,60    0,72	1,6 2,3 	260 330    387	494	38 47    54	35 28 29 22	28 33 32 32 31	31 36 35 35 34	35 38 37 37 37	38 41 40 40 40	25 30 29 29 28	26 31 30 30 29	0,070 0,053 0,056 0,041	22 73 60 63 52	33 39 110 132 90 108 95 114 78 93
8,60 8,80 9,00 9,20 9,40 9,60 9,80 _10,00	18 16 41 44 51 22 53 11 61 15 62 36 59 15	2//// 3:::: 4/:/: 4/:/: 4/:/: 3:::: 4/:/:	1,85 1,85 1,85 1,85 1,85 1,85 1,85	1,59 1,63 1,66 1,70 1,74 1,78 1,81 1,85	0,75 1,70 1,77 2,03 1,97	2,5 6,4 6,6 7,6 7,0	400 430 437 423 456	646 655 635 684	56 153 159 183  177	29 36 37 41 42 39 34	32 33 33 34 34 34 34 33	35 36 36 36 36 36 36 36	37 38 38 39 39 39 38 38	40 41 41 41 41 41 41	29 30 30 31 31 31 30	30 31 31 32 32 32 32 31	0,057 0,072 0,073 0,083 0,083 0,078 0,066	68 85 88 102 103 98 85	103 123 128 153 133 159 163 163 155 186 148 177 128 153





(Provincia di Siena)

SCHEDA INDAGINE N.:

204

RIFERIMENTO PRATICA EDILIZIA:

05/0822

Località:

LOC. STAGGIA SENESE - COMUNE DI POGGIBONSI

Progetto:

REALIZZAZIONE DI FABBRICATI PER CIVILE ABITAZIONE

Numero e Tipo di Indagine:

9 PROVE PENETROMETRICHE CPT

4 CAROTAGGI CONTINUI

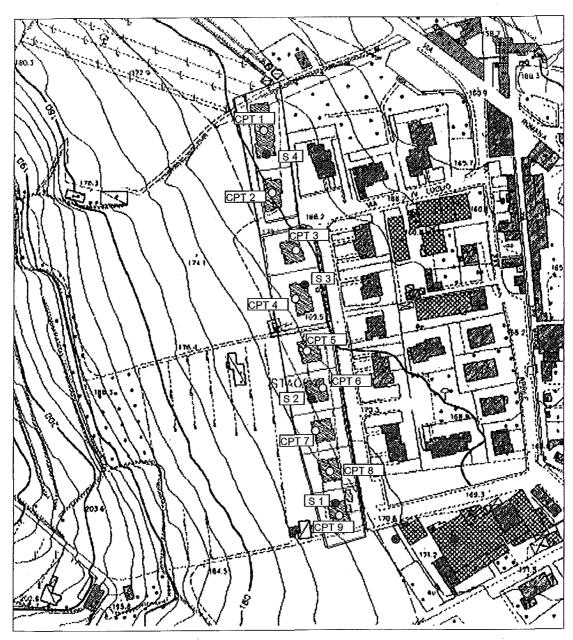
11 CAMPIONI PER PROVE DI LABORATORIO

ALLEGATI:

4 CAROTAGGI CONTINUI

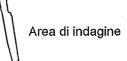
9 CERTIFICATI CPT

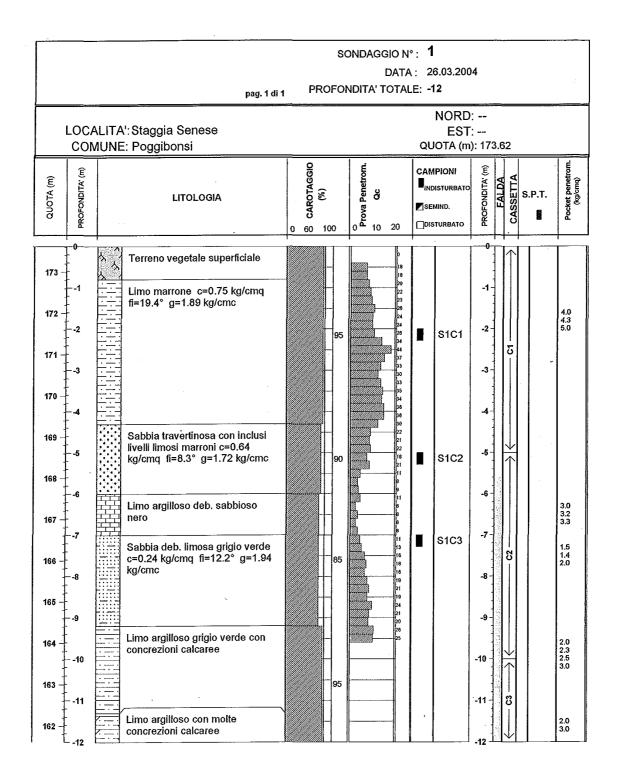
DATA INDAGINE:

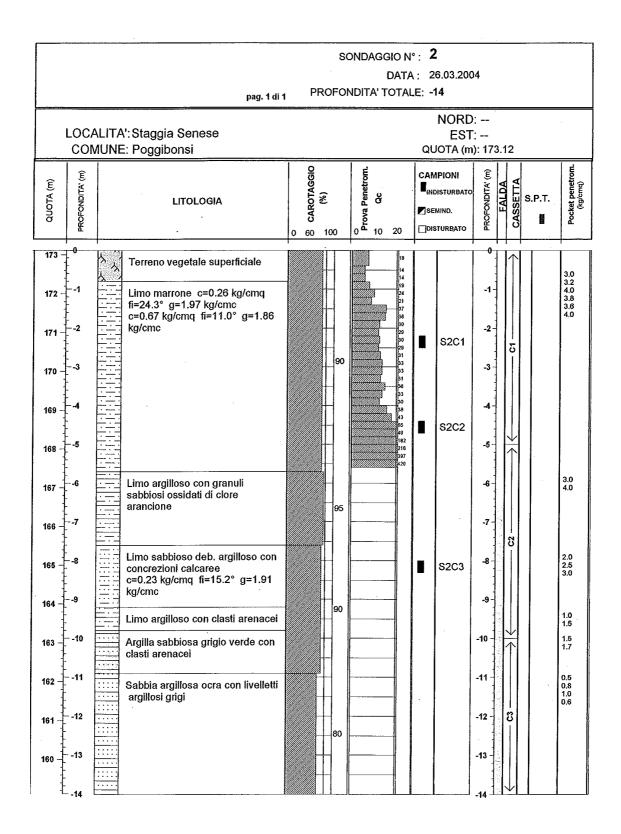

09/03/2004

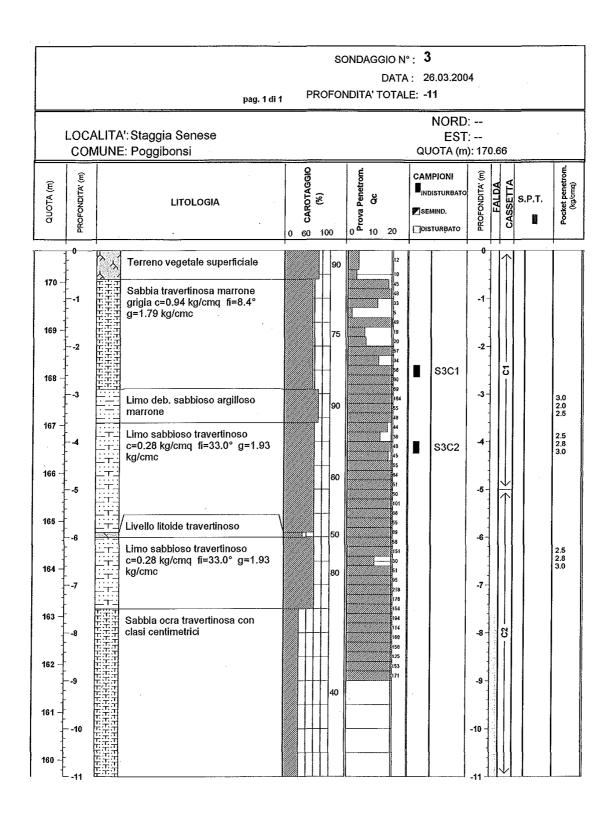
Note:

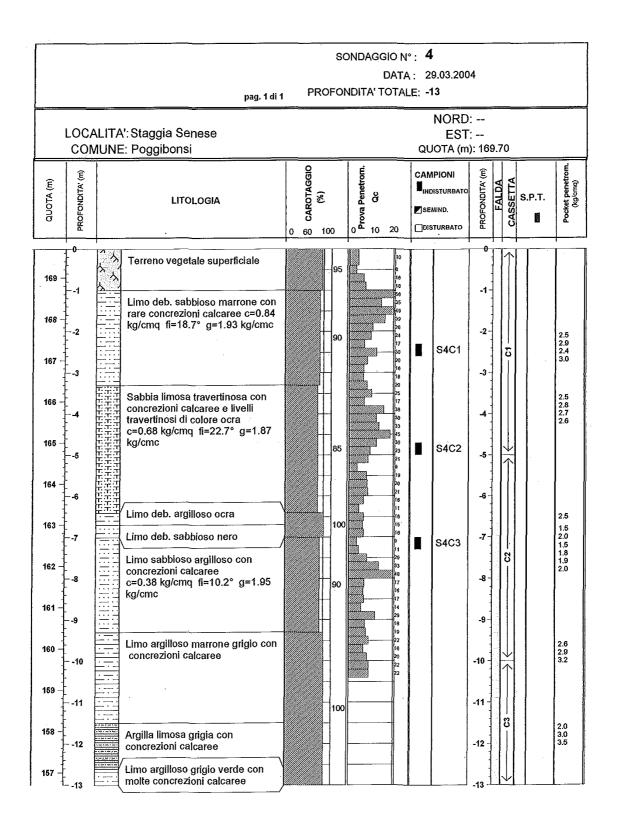
nella relazione mancano i certificati delle


prove di laboratorio


### CARTA DEI SONDAGGI E DATI DI BASE





### LEGENDA:


- O Prova penetrometrica c.p.t.
- Sondaggio geognostico
- Sondaggio geognostico d'archivio









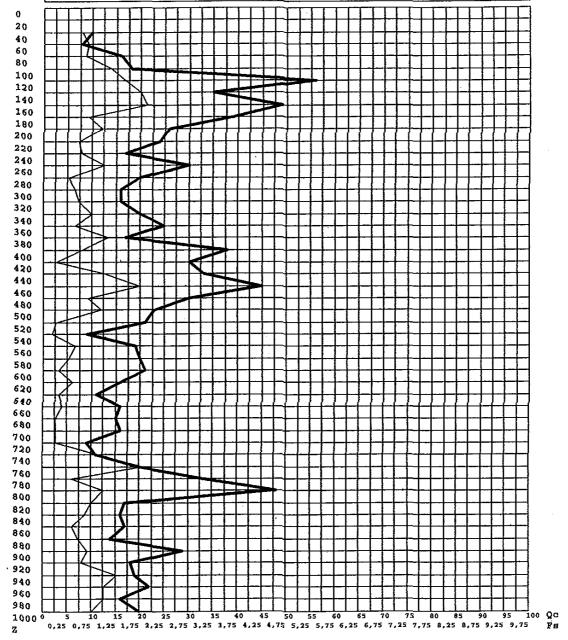


### Prova Penetrometrica Statica

Pagina n.1

Indagine: VA-82-04 Certificato: 77/04 Prova nº in data: 09/03/2004 Località: Staggia Senese, Via 4 Luglio Note sulla committenza: Note relative alla prova: === Falda rileyata alla profondità di cm: Spinta del penetrometro (tonnellate):

Z	Qc	Fs	Rf	Car	Dr	F	Cu	Cu n.	Mv	Classificazione
40	10	0,80	8,00	С	0,0	0,0	0,54	7,96	0,05000	Argilla limosa
60	8	0,93	11,67	С	0,0	0,0	0,63	6,20	0,06250	Argilla
80	16	0,87	5,42	С	0,0	0,0	0,59	4,33	0,03125	
100	18	1,40	7,78	С	0,0	0,0	0,95	5,52	0,02778	Argilla limosa
120	56	1,67	2,98	ī	57,9	28,3	0,00	0,00	0,00595	Sabbia limosa
140	35	2,00	5,71	C	0,0	0,0	1,36	5,56	0,00952	Limo argilloso
160	49	2,13	4,35	I	62,5	25,3	0,00	0,00	0,00680	Limo sabbioso
180	39	0,93	2,39	I	47,0	29,4	0,00	0,00	0,00855	Sabbia limosa
200	26	1,20	4,62	C	0,0	0,0	0,82	2,32	0,01282	Limo argilloso
220	24	0,73	3,06	I	42,5	27,0	0,00	0,00	0,01389	Sabbia limosa
240	17	0,80	4,71	С	0,0	0,0	0,54	1,30	0,02941	Limo argilloso
260	30	1,27	4,22	1	52,7	25,1	0,00	0,00	0,01111	Limo sabbioso
280	20	0,53	2,67	I	36,6	27,7	0,00	0,00	0,01667	Sabbia limosa
300	16	0,67	4,17	I	40,8	24,6	0,00	0,00	0,02083	Limo sabbioso
320	16	0,73	4,58	C	0,0	0,0	0,50	0,91	0,03125	Limo argilloso
340	20	1,00	5,00	С	0,0	0,0	0,68	1,16	0,01667	Limo argilloso
360	25	0,67	2,67	I	40,8	28,0	0,00	0,00	0,01333	Sabbia limosa
380	17	1,33	7,84	C	0,0	0,0	0,91	1,39	0,02941	Argilla limosa
400	38	0,80	2,11	I	44,2	30,3	0,00	0,00	0,00877	Sabbia limosa
420	30	0,27	0,89	I	23,6	35,0	0,00	0,00	0,01111	Sabbia ghiaiosa
440	33	1,27	3,84	I	52,7	25,8	0,00	0,00	0,01010	Limo sabbioso
460	45	2,00	4,44	I	61,3	25,1	0,00	0,00	0,00741	Limo sabbioso
480	30	0,93	3,11	I	47,0	27,2	0,00	0,00	0,01111	Sabbia limosa
500	23	1,20	5,22	C	0,0	0,0	0,82	0,95	0,01449	Limo argilloso
520	21	0,27	1,27	I	23,6	32,0	0,00	0,00	0,01587	Sabbia
540	9	0,20	2,22	1	18,3	27,9	0,00	0,00	0,03704	Sabbia limosa
560	19	0,67	3,51	I	40,8	25,8	0,00	0,00	0,01754	Limo sabbioso
· 580	20	0,53	2,67	I	36,6	27,7	0,00	0,00	0,01667	Sabbia limosa
600	21	0,33	1,59	I	27,8	30,7	0,00	0,00	0,01587	Sabbia
620	16	0,60	3,75	1	38,8	25,2	0,00	0,00	0,02083	Limo sabbioso
640	11	0,33	3,03	I	27,8	26,2	0,00	0,00	0,03030	Sabbia limosa
660	16	0,40	2,50	. I	31,2	27,9	0,00	0,00	0,02083	Sabbia limosa
680	15	0,27	1,78	I	23,6	30,0	0,00	0,00	0,02222	Sabbia limosa
700	16	0,27	1,67	1	23,6	30,5	0,00	0,00	0,02083	Sabbia limosa
720	9	0,27	2,96	Ι	23,6	26,2	0,00	0,00	0,03704	Sabbia limosa
740	11	1,13	10,30	С	0,0	0,0	0,77	0,62	0,04545	Argilla
760	20	2,07	10,33	С	0,0	0,0	1,41	1,10	0,01667	Argilla
780	33	0,60	1,82	I	38,8	31,1	0,00	0,00	0,01010	Sabbia limosa
800	48	1,27	2,64	I	52,7	29,0	0,00	0,00	0,00694	Sabbia limosa
820	17	1,00	5,88	С	0,0	0,0	0,68	0,49	0,02941	Limo argilloso
840	16	0,87	5,42	С	0,0	0,0	0,59	0,42	0,03125	Limo argilloso
860	17	0,60	3,53	I	38,8	25,7	0,00	0,00	0,01961	Limo sabbioso
880	14	,0,73	5,24	С	0,0	0,0	0,50	0,34	0,03571	Limo argilloso


Z	Qc	Fs	Rf	Car	Dr	Fi	Cu	Cu n.	Mv	Classificazione	
900	29	0,93	3,22	I	47,0	26,9	0,00	0,00	0,01149	Limo sabbioso	
920	18	0,80	4,44	I	44,2	24,3	0,00	0,00	0,01852	Limo sabbioso	
940	19	1,53	8,07	С	0,0	0,0	1,04	0,66	0,02632	Argilla limosa	
960	22	1,27	5,76	С	0,0	0,0	0,86	0,53	0,01515	Limo argilloso	
980	16	1,27	7,92	C	0,0	0,0	0,86	0,52	0,03125	Argilla limosa	
1000	20	1,00	5,00	C	0,0	0,0	0,68	0,40	0,01667	Limo argilloso	
1020	22	1,20	5,45	C	0,0	0,0	0,82	0,47	0,01515	Limo argilloso	
1040	22	0,00	0,00		0,0	0,0	0,00	0,00	0,00000		

Legenda Parametri Geotecnici:

Z - Profondità dal piano di campagna (in·cm). Qc - Resistenza alla punta (in Kg/cm2). Fs - Resistenza unitaria attrito laterale (in Kg/cm2). Rf - Rapporto delle resistenze Fs/Qc (in %). Car - Caratterizzazione del terreno (Incoerente/Coerente). Dr - Densità relativa (in %). Fi - Angolo di attrito efficace (in gradi). Cu - Resistenza al taglio non drenata (in Kg/cm2). Cu n.- Resistenza al taglio non drenata normalizzata. Mv - Coefficiente compressione volumetrica (in cm2/Kg). Classificazione - Interpretazione stratigrafica del terreno (da SEARLE 1979)

## Diagramma di resistenza alla punta

```
Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :1
Data prova :09/03/2004
Note operative :==
Profondità falda :== (cm)
Spinta penetr. :20 (tonn.)
```



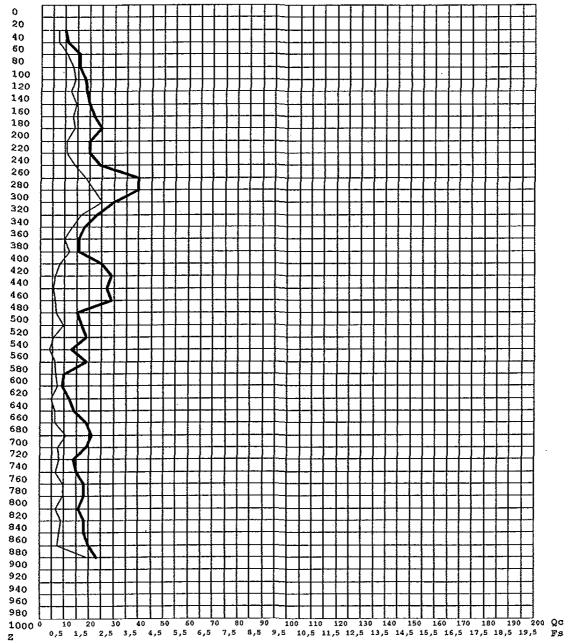
Legenda

Ascisse : Qc - lettura punta (in Kg/cm2 - tratto grafico marcato) : Fs - resistenza unitaria attrito laterale (in Kg/cm2) Ordinata: Z - profondità dal piano di campagna (in centimetri)

### Elaborazione prova penetrometrica CPT

Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :2
Data prova :18/03/2004
Note operative :==
Recepcità folda :== (cm)

Profondità falda :== (cm) Spinta penetr. :20 (tonn.)

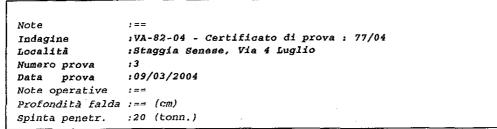

z	Qc	Fs	Rf	Car.	Dr	Fi	Cu	Cu n	Mv	Classific.
40	10	0,73	7,33	С	0,0	0,0	0,50	7,29	0,05000	Argilla limosa
60	11	0,73	6,67	C	0,0	0,0	0,50	4,85	0,04545	Argilla limosa
80	16	1,07	6,67	C	0,0	0,0	0,73	5,23	0,03125	Argilla limosa
100	16	1,33	8,33	C	0,0	0,0	0,91	5,20	0,03125	Argilla limosa
120	18	1,40	7,78	C	0,0	0,0	0,95	4,52	0,02778	Argilla limosa
140	19	1,27	6,67	C	0,0	0,0	0,86	3,49	0,02632	Argilla limosa
160	20	1,47	7,33	C	0,0	0,0	1,00	3,51	0,01667	Argilla limosa
180	22	1,33	6,06	C	0,0	0,0	0,91	2,84	0,01515	Limo argilloso
200	25	1,40	5,60	C	0,0	0,0	0,95	2,68	0,01333	Limo argilloso
220	20	1,07	5,33	С	0,0	0,0	0,73	1,86	0,01667	Limo argilloso
240	20	1,07	5,33	С	0,0	0,0	0,73	1,71	0,01667	Limo argilloso
260	24	1,40	5,83	С	0,0	0,0	0,95	2,07	0,01389	Limo argilloso
280	40	1,87	4,67	C	0,0	0,0	1,27	2,54	0,00833	Limo argilloso
300	40	2,20	5,50	C	0,0	0,0	1,50	2,79	0,00833	Limo argilloso
320	30	2,53	8,44	С	0,0	0,0	1,72	2,99	0,01111	Argilla limosa
340	23	1,67	7,25	С	0,0	0,0	1,13	1,85	0,01449	Argilla limosa
360	18	1,33	7,41	С	0,0	0,0	0,91	1,40	0,02778	Argilla limosa
380	16	1,00	6,25	С	0,0	0,0	0,68	0,99	0,03125	Argilla limosa
400	16	1,20	7,50	C	0,0	0,0	0,82	1,13	0,03125	Argilla limosa
420	25	0,80	3,20	I	44,2	26,7	0,00	0,00	0,01333	Limo sabbioso
440	29	0,60	2,07	I	38,8	30,0	0,00	0,00	0,01149	Sabbia limosa
460	27	0,53	1,98	I	36,6	30,2	0,00	0,00	0,01235	Sabbia limosa
480	29	0,60	2,07	I	38,8	30,0	0,00	0,00	0,01149	Sabbia limosa
500	15	0,67	4,44	I	40,8	24,1	0,00	0,00	0,02222	Limo sabbioso
520	17	0,93	5,49	С	0,0	0,0	0,63	0,69	0,02941	Limo argilloso
540	19	0,53	2,81	I	36,6	27,3	0,00	0,00	0,01754	Sabbia limosa
560	13	0,40	3,08	I	31,2	26,3	0,00	0,00	0,02564	Sabbia limosa
580	19	0,60	3,16	Ι	38,8	26,5	0,00	0,00	0,01754	Sabbia limosa
600	10	0,67	6,67	C	0,0	0,0	0,45	0,43	0,05000	Argilla limosa
620	9	0,73	8,15	C	0,0	0,0	0,50	0,46	0,05556	Argilla limosa
640	12	0,47	3,89	I	34,1	24,8	0,00	0,00	0,02778	Limo sabbioso
660	14	0,60	4,29	I	38,8	24,3	0,00	0,00	0,02381	Limo sabbioso
680	19	0,60	3,16	I	38,8	26,5	0,00	0,00	0,01754	Sabbia limosa
700	21	1,07	5,08	C	0,0	0,0	0,73	0,60	0,01587	Limo argilloso
720	19	0,73	3,86	I	42,5	25,2	0,00	0,00	0,01754	Limo sabbioso
740	14	0,80	5,71	С	0,0	0,0	0,54	0,43	0,03571	Limo argilloso
760	15	0,67	4,44	I	40,8	24,1	0,00	0,00	0,02222	Limo sabbioso
780	18	0,93	5,19	C	0,0	0,0	0,63	0,47	0,02778	Limo argilloso
800	18	0,93	5,19	C	0,0	0,0	0,63	0,46	0,02778	Limo argilloso
820	16	0,67	4,17	I	40,8	24,6	0,00	0,00	0,02083	Limo sabbioso
840	18	0,87	4,81	C	0,0	0,0	0,59	0,41	0,02778	Limo argilloso
860	18	0,80	4,44	I	44,2	24,3	0,00	0,00	0,01852	Limo sabbioso
880	20	0,73	3,67	I	42,5	25,6	0,00	0,00	0,01667	Limo sabbioso
900	23	_*_	*	* <u>-</u>	_*_	_*	*	*	-*-	-*-

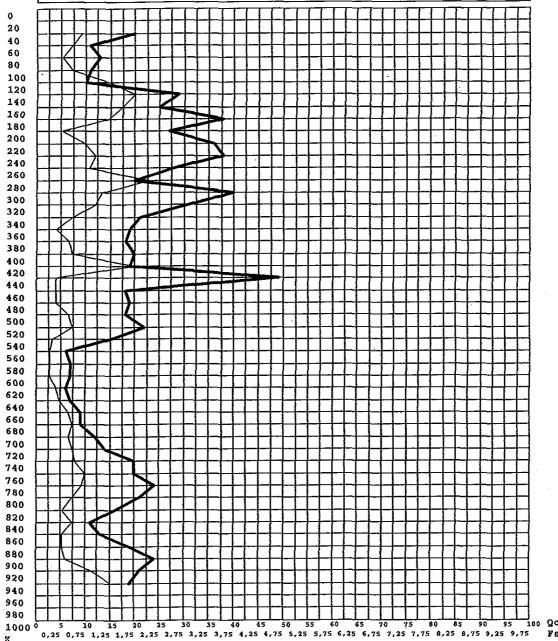
Legenda Parametri Geotecnici - CPT _____

⁻ profondità dal piano di campagna (in cm)

# Diagramma di resistenza alla punta

Note :==
Indagine :VA-82-04 ~ Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :2
Data prova :18/03/2004
Note operative :==
Profondità falda :== (cm)
Spinta penetr. :20 (tonn.)





# Prova Penetrometrica Statica

Pagina n.1

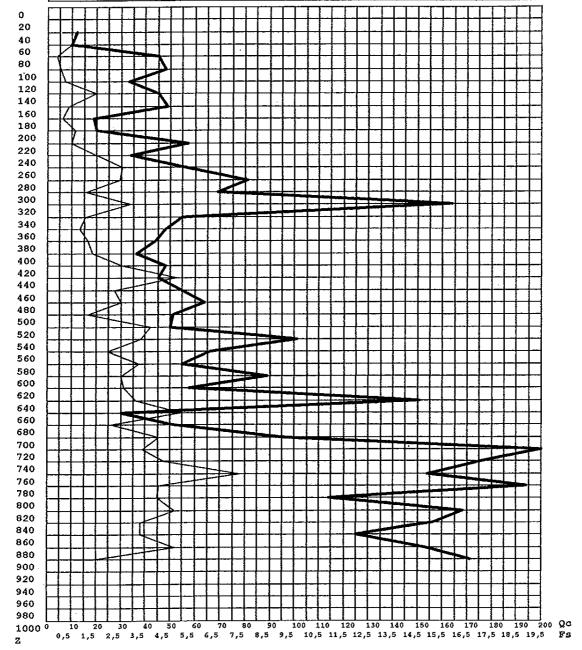
te sulla	Staggia commit ive alla	tenza:	e, Via 4 —	Luglio	ı			П	idagme: V	A-82-04 Certificato: 77/04 Prova nº in data: 09/03/2004	
			ità di en	ı:	==		Spin	ita del p	enetrometro	(tonnellate): 20	
Z	Qc	Fs	Rf	Car	Dr	Fi	Cu	Ca n.	My	Classificazione	
40	20	0,93	4,67	C	0,0	0,0	0,63	9,22	0,01667	Limo argilloso	
60	11	0,73	6,67	c	0,0	0,0	0,50	4,82	0,04545	Argilla limosa	
80	13	0,53	4,10	Ī	36,6	24,5	0,00	0,00	0.02564	Limo sabbioso	
100	111	0,73	6,67	c	0,0	0,0	0,50	2,93	0,04545	Argilia limosa	
120	10	1,47	14,67	C	0,0	0,0	1,00	4,88	0,05000	Argilla molle	
140	29	2,00	6,90	Č	0,0	0,0	1,36	5,59	0,01149	Argilla limosa	
160	25	1,73	6,93	č	0,0	0,0	1,18	4,19	0,01333	Argilla limosa	
180	38	1,47	3,86	I	55,5	25,9	0,00	0,00	0,00877	Limo sabbioso	
200	27	0,53	1,98	I	36,6	30,2	0,00	0,00	0,01235	Sabbia limosa	
220	36	1,00	2,78	Ī	48,3	28,2	0,00	0,00	0,00926	Sabbia limosa	
240	38	1,20	3,16	ī	51,7	27,4	0,00	0,00	0,00877	Sabbia limosa	
260	28	1,07	3,81	ī	49,5	25,7	0,00	0,00	0,01190	Limo sabbioso	
280	20	2,27		c	0,0	0,0	1,54	3,17	0,01667	Argilla	
300			11,33	I	53,7	27,0	0,00	0,00	0,00833	Limo sabbioso	
1	40	1,33	3,33		51,7			0,00	0,00833	Limo sabbioso	
320	31	1,20	3,87	I		25,7	0,00		,	Limo sabbioso	
340	21	0,73	3,49	I	42,5	26,0	0,00	0,00	0,01587		
360	19	0,40	2,11	I	31,2	29,2	0,00	0,00	0,01754	Sabbia limosa	
380	18	0,67	3,70	I	40,8	25,4	0,00	0,00	0,01852	Limo sabbioso	
400	20	0,73	3,67	I	42,5	25,6	0,00	0,00	0,01667	Limo sabbioso	
420	19	2,00	10,53	С	0,0	0,0	1,36	1,88	0,02632	Argilla	
440	49	0,40	0,82	I	31,2	36,8	0,00	0,00	0,00680	Ghiaia sabbiosa	
460	18	0,40	2,22	Ι	31,2	28,8	0,00	0,00	0,01852	Sabbia limosa	
480	19	0,40	2,11	I	31,2	29,2	0,00	0,00	0,01754	Sabbia limosa	
500	18	0,67	3,70	I	40,8	25,4	0,00	0,00	0,01852	Limo sabbioso	
520	2,2	0,73	3,33	I	42,5	26,3	0,00	0,00	0,01515	Limo sabbioso	
540	15	0,33	2,22	I	27,8	28,5	0,00	0,00	0,02222	Sabbia limosa	
560	6	0,27	4,44	I	23,6	23,5	0,00	0,00	0,05556	Limo sabbioso	
580	7	0,27	3,81	1	23,6	24,5	0,00	0,00	0,04762	Limo sabbioso	
600	7	0,27	3,81	I	23,6	24,5	0,00	0,00	0,04762	Limo sabbioso	
620	6	0,40	6,67	С	0,0	0,0	0,27	0,26	0,08333	Argilla limosa	
640	7	0,47	6,67	С	0,0	0,0	0,32	0,29	0,07143	Argilla limosa	
660	9(	0,67	7,41	c (	0,0 (	0,0	0,45	0,41	0,05556	Argilla limosa	
680	9	0,73	8,15	С	0,0	0,0	0,50	0,43	0,05556	Argilla limosa	
700	12	0,67	5,56	C	0,0	0,0	0,45	0,38	0,04167	Limo argilloso	
720	14	0,73	5,24	c	0,0	0,0	0,50	0,41	0,03571	Limo argilloso	
740	20	0,80	4,00	Ī	44,2	25,0	0,00	0,00	0,01667	Limo sabbioso	
760	20	1,00	5,00	c	0,0	0,0	0,68	0,53	0,01667	Limo argilloso	
780	24	0,93	3,89	ĭ	47,0	25,4	0,00	0,00	0,01389	Limo sabbioso	
800	21	0,73	3,49	i l	42,5	26,0	0,00	0,00	0,01587	Limo sabbioso	
820	16	0,53	3,33	Î	36,6	26,0	0,00	0,00	0,02083	Limo sabbioso	
840	- 11	0,73	6,67	$\hat{c}$	0,0	0,0	0,50	0,35	0,04545	Argilla limosa	
860	13	0,73	4,10	ĭ	36,6	24,5	0,00	0,00	0,02564	Limo sabbioso	
880	19	0,53	2,81	I	36,6	27,3	0,00	0,00	0,01754	Sabbia limosa	
00V [	19}	0,551	2,01 ]	1 }	30,0 [	2/,0]	0,00	0,00	0,01754	olooja iinosa	
z	Qe	Fs	Rf	Car	Dr	ы	Cu	Cu n.	Mv	Classificazione	
ooo l	اید	ا م م ا	250	_T 1	امود	20 4	0,00	ا مم م	0,01389	Sabbia limona	
900 920	24 21	0,60 1,13	2,50 5,40	I C	38,8 0,0	28,4 0,0	0,00	0,00	0,01589	Sabbia limosa Limo argilloso	
		1141	3.4U f	L I	0.01	0.01	U,//	0.501	U.U1J0/1	FITTO SEGRIDOSO	

Diagramma di resistenza alla punta





### Elaborazione prova penetrometrica CPT


Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :4
Data prova :18/03/2004
Note operative :==

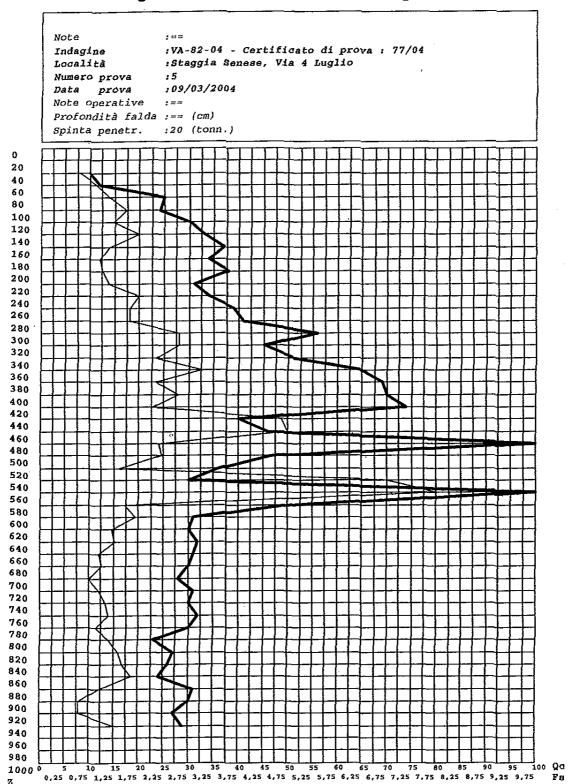
Profondità falda :== (cm) Spinta penetr. :20 (tonn.)

Z	Qc	Fs	Rf	Car.	Dr	Fi.	Cu	Cu n	Mv	Classific.
40	12	1,13	9,44	С	0,0	0,0	0,77		0,04167	Argilla
60	1.0	1,00	10,00	C	0,0	0,0	0,68	6,59	0,05000	Argilla
80	45	0,40	0,89	I	31,2	36,0	0,00	0,00	0,00741	Sabbia ghiaiosa
100	48	0,53	1,11	I	36,6	34,6	0,00	0,00	0,00694	Sabbia ghiaiosa
120	33	0,73	2,22	I	42,5	29,7	0,00	0,00	0,01010	Sabbia limosa
140	45	2,00	4,44	I	61,3	25,1	0,00	0,00	0,00741	Limo sabbioso
160	49	0,87	1,77	Ι	45,7	32,0	0,00	0,00	0,00680	Sabbia limosa
180	19	0,60	3,16	I	38,8	26,5	0,00	0,00	0,01754	Sabbia limosa
200	20	.1,13	5,67	C	0,0	0,0	0,77	2,28	0,01667	Limo argilloso
220	57	1,00	1,75	I	48,3	32,3	0,00	0,00	0,00585	Sabbia limosa
240	34	2,00	5,88	C	0,0	0,0	1,36	3,31	0,00980	Limo argilloso
260	56	3,07	5,48	C	0,0	0,0	2,09	4,64	0,00595	Limo argilloso
280	81	2,93	3,62	I	68,4	27,4	0,00	0,00	0,00412	Limo sabbioso
300	69	1,60	2,32	I	57,1	30,6	0,00	0,00	0,00483	Sabbia limosa
320	164	3,40	2,07	I	71,2	33,4	0,00	0,00	0,00203	Sabbia limosa
340	55	1,53	2,79	I	56,3	28,8	0,00	0,00	0,00606	Sabbia limosa
360	48	1,33	2,78	I	53,7	28,6	0,00	0,00	0,00694	Sabbia limosa
380	44.	1,67	3,79	I	57,9	26,2	0,00	0,00	0,00758	Limo sabbioso
400	36	1,87	5,19	C	0,0	0,0	1,27	1,80	0,00926	Limo argilloso
420	48	3,07	6,39	С	0,0	0,0	2,09	2,80	0,00694	Argilla limosa
440	45	5,27	11,70	C	0,0	0,0	3,58	4,56	0,00741	Argilla
460	55	2,73	4,97	c	0,0	0,0	1,86	2,26	0,00606	Limo argilloso
480	64	3,00	4,69	C	0,0	0,0	2,04	2,37	0,00521	Limo argilloso
500	51	1,67	3,27	Ī	57,9	27,5	0,00	0,00	0,00654	Limo sabbioso
520	50	4,20	8,40	c	0,0	0,0	2,86	3,04	0,00667	Argilla limosa
540	101	3,80	3,76	I	73,3	27,4	0,00	0,00	0,00330	Limo sabbioso
560	66	2,47	3,74	I	65,2	26,8	0,00	0,00	0,00505	Limo sabbioso
580	. 55	3,73	6,79	C	0,0	0,0	2,54	2,40	0,00606	Argilla limosa
600	89	3,00	3,37	I	68,8	28,1	0,00	0,00	0,00375	Limo sabbioso
620	58	3,13	5,40	c	0,0	0,0	2,13	1,88	0,00575	Limo argilloso
640	151	3,60	2,38	r	72,2	32,0	0,00	0,00	0,00221	Sabbia limosa
660	30	5,47	18,22	c	0,0	0,0	3,72	3,07	0,01111	Argilla molle
680	51	2,60	5,10	Ċ	0,0	0,0	1,77	1,42	0,00654	Limo argilloso
700	95	4,53	4,77	c	0,0	0,0	3,08	2,39	0,00351	Limo argilloso
720	218	3,87	1,77	I	73,6	35,5	0,00	0,00	0,00153	Sabbia limosa
740	176	4,73	2,69	I	77,4	31,3	0,00	0,00	0,00189	Sabbia limosa
760	154	7,80	5,06	Ĉ	0,0	0,0	5,30	3,78	0,00216	Limo argilloso
780	194	4,53	2,34	I	76,6	32,8	0,00	0,00	0,00172	Sabbia limosa
800	114	4,47	3,92	I	76,3	27,2	0,00	0,00	0,00292	Limo sabbioso
320	168	5,20	3,10	I	79,1	30,0	0,00	0,00	0,00198	Sabbia limosa
340	156	3,80	2,44	I	73,3	31,9	0,00	0,00	0,00214	Sabbia limosa
360	125	3,80	3,04	I	73,3	29,5	0,00	0,00	0,00214	Sabbia limosa
380	153	5,20	3,40	I	79,1	28,9	0,00	0,00	0,00207	Limo sabbioso
300	171	3,20 *-	o,40 ⊷*-	*	/ <i>5</i> ,1	_*_	-*-	*-	-*-	-*-

# Diagramma di resistenza alla punta

```
Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :4
Data prova :18/03/2004
Note operative :==
Profondità falda :== (cm)
Spinta penetr. :20 (tonn.)
```




# Prova Penetrometrica Statica

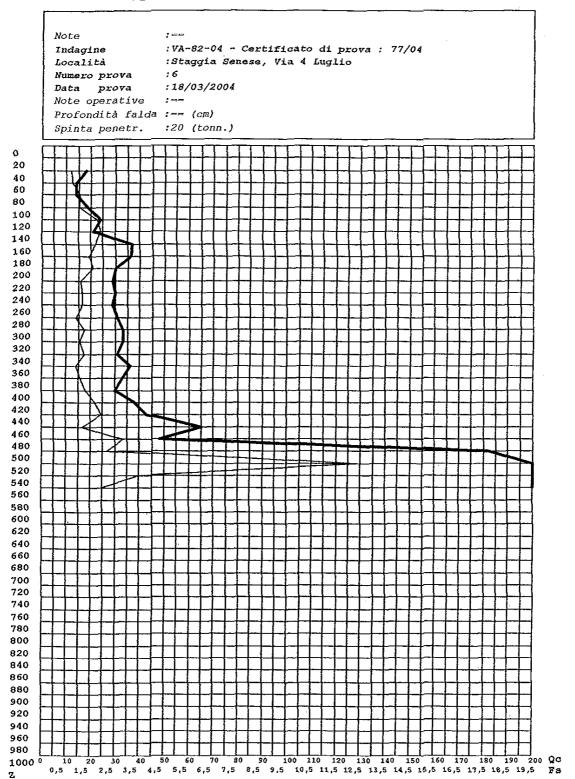
Pagina n.l

Indagine: VA-82-04 Certificato: 77/04 Prova nº 5
Località: Staggia Senese, Via 4 Luglio in data: 09/03/2004
Note sulla committenza: =
Note relative alla prova: =
Falda rilevata alla profondità di cm: = Spinta del penetrometro (tonnellate): 20

40	Z	Qe	Fs	Rf	Car	Dr	Fi	Cu	Cu n.	Mv	Classificazione
80	40	. 10	0,80	8,00	C	0,0	0,0	0,54	7,96	0,05000	Argilla limosa
100	60	12	1,13	9,44	С	0,0	0,0	0,77	7,47	0,04167	Argilla
120	80	25	1,40	5,60	C	0,0	0,0	0,95	6,84	0,01333	Limo argilloso
140	100	24	1,73	7,22	C	0,0	0,0	1,18	6,66	0,01389	
140	120	30	1,47	4,89	C	0,0	0,0	1,00	4,66	0,01111	Limo argilloso
180	140	33	2,00	6,06	С	0,0	0,0	1,36	5,40	0,01010	
180	160	37	1,40	3,78	I	54,6	26,0	0,00	0,00	0,00901	Limo sabbioso
200	180	34	1,20		I		26,4	0,00		0,00980	Limo sabbioso
220	200	38			I					0,00877	Limo sabbioso
240						, , ,	1 1	, ,			Limo argilloso
260   39   1,80   4,62   C   0,0   0,0   1,22   2,58   0,00855   Limo argilloso   300   41   1,80   4,39   I   59,3   25,1   0,00   0,00   0,00813   Limo sabbioso   320   45   2,80   5,00   C   0,0   0,0   1,90   3,47   0,00595   Limo argilloso   320   45   2,80   6,22   C   0,0   0,0   1,90   3,47   0,00595   Limo argilloso   340   51   2,33   4,58   C   0,0   0,0   1,59   2,53   0,00564   Limo argilloso   360   65   3,27   5,03   C   0,0   0,0   1,59   2,53   0,00564   Limo argilloso   380   69   2,33   3,38   I   64,1   27,7   0,00   0,00   0,00483   Limo sabbioso   420   70   2,80   4,00   I   67,6   56,4   0,00   0,00   0,00463   Limo sabbioso   420   74   2,27   3,06   I   63,6   28,6   0,00   0,00   0,00450   Sabbia limosa   440   40   4,87   12,17   C   0,0   0,0   3,40   3,96   0,00725   Argilla   460   46   5,00   10,87   C   0,0   0,0   3,40   3,96   0,00725   Argilla   480   127   2,40   1,89   I   64,7   33,5   0,00   0,00   0,00262   Sabbia limosa   520   36   1,60   4,44   I   57,1   24,9   0,00   0,00   0,00926   Limo argilloso   540   30   7,00   23,33   C   0,0   0,0   4,76   4,71   0,01111   Argilla molle   550   47   2,47   5,25   C   0,0   0,0   5,44   5,19   0,000   580   50   1,73   3,47   I   58,6   27,0   0,00   0,00   0,00667   Limo sabbioso   580   50   1,73   3,47   I   58,6   27,0   0,00   0,00   0,00667   Limo sabbioso   680   30   1,47   4,22   I   52,7   25,7   0,00   0,00   0,001075   Limo sabbioso   680   30   1,27   4,22   I   52,7   25,7   0,00   0,00   0,001190   Limo sabbioso   680   30   1,33   4,44   I   53,7   24,7   0,00   0,00   0,001190   Limo sabbioso   680   30   1,37   4,22   I   51,7   25,7   0,00   0,00   0,001111   Limo argilloso   680   30   1,37   4,22   I   51,7   25,7   0,00   0,00   0,001190   Limo sabbioso   680   30   1,33   4,44   I   53,7   24,7   0,00   0,00   0,00190   Limo sabbioso   680   30   1,33   4,44   I   53,7   24,7   0,00   0,00   0,001919   Limo sabbioso   680   30   1,38   1   54,6   24,9   0,00   0,00   0,001919   Limo sabbioso   680   24						1 . 1				0.00980	
280											
300		-								-	
320			′ 1				,	-	,	· · ·	***
340											
360		- 1			•		· · · ·	- 1		, I	
380								′ 1			
400											
420											
440								, ,			
460	- 1	. 1				, i		, ,	′ 1		
480		1									
500         47         2,47         5,25         C         0,0         0,0         1,68         1,79         0,00709         Limo argilloso           520         36         1,60         4,44         I         57,1         24,9         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,00         0,0			' '			, ,					5
520         36         1,60         4,44         I         57,1         24,9         0,00         0,00         0,00926         Limo sabbioso           540         30         7,00         23,33         C         0,0         0,0         4,76         4,71         0,01111         Argilla molle           560         160         8,00         5,00         C         0,0         0,0         5,44         5,19         0,00208         Limo argilloso           580         50         1,73         3,47         I         58,6         27,0         0,00         0,00         0,00667         Limo sabbioso           600         31         1,93         6,24         C         0,0         0,0         1,10         0,86         0,01111         Limo sabbioso           620         30         1,47         4,89         C         0,0         0,0         1,04         0,87         0,01042         Limo sabbioso           640         32         1,53         4,79         C         0,0         0,0         1,04         0,87         0,01042         Limo sabbioso           680         30         1,27         4,22         I         52,7         25,1         0,00		1	′ (					- 1	, (	, ,	
540         30         7,00         23,33         C         0,0         0,0         4,76         4,71         0,01111         Argilla molle           560         160         8,00         5,00         C         0,0         0,0         5,44         5,19         0,00208         Limo argilloso           580         50         1,73         3,47         I         58,6         27,0         0,00         0,00         0,00667         Limo argilloso           600         31         1,93         6,24         C         0,0         0,0         1,31         1,17         0,01075         Argilla limosa           620         30         1,47         4,89         C         0,0         0,0         1,0         0,86         0,01111         Limo argilloso           640         32         1,53         4,79         C         0,0         0,0         1,04         0,87         0,01042         Limo argilloso           680         30         1,27         4,22         I         52,7         25,1         0,00         0,00         0,01111         Limo sabbioso           700         28         1,00         3,57         I         48,3         26,1         0,00	· ·										
560         160         8,00         5,00         C         0,0         0,0         5,44         5,19         0,00208         Limo argilloso           580         50         1,73         3,47         I         58,6         27,0         0,00         0,00         0,00667         Limo argilloso           600         31         1,93         6,24         C         0,0         0,0         1,31         1,17         0,01075         Argilla limosa           620         30         1,47         4,89         C         0,0         0,0         1,00         0,86         0,01111         Limo argilloso           640         32         1,53         4,79         C         0,0         0,0         1,00         0,86         0,01111         Limo argilloso           660         31         1,20         3,87         I         51,7         25,7         0,00         0,00         0,01075         Limo argilloso           680         30         1,27         4,22         I         52,7         25,1         0,00         0,01075         Limo sabbioso           700         28         1,00         3,57         I         48,3         26,1         0,00         0,00 <td></td> <td>* .</td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td> <td></td> <td>- 1</td> <td></td> <td></td>		* .			- 1				- 1		
580         50         1,73         3,47         I         58,6         27,0         0,00         0,00         0,00667         Limo sabbioso           600         31         1,93         6,24         C         0,0         0,0         1,31         1,17         0,01075         Argilla limosa           620         30         1,47         4,89         C         0,0         0,0         1,00         0,86         0,01111         Limo argilloso           640         32         1,53         4,79         C         0,0         0,0         1,04         0,87         0,01042         Limo argilloso           660         31         1,20         3,87         I         51,7         25,7         0,00         0,00         0,01075         Limo sabbioso           680         30         1,27         4,22         I         52,7         25,1         0,00         0,00         0,01171         Limo sabbioso           700         28         1,00         3,57         I         48,3         26,1         0,00         0,00         0,01190         Limo sabbioso           740         30         1,33         4,44         I         53,7         24,7         0,00											
600 31 1,93 6,24 C 0,0 0,0 1,31 1,17 0,01075 Argilla limosa 620 30 1,47 4,89 C 0,0 0,0 1,00 0,86 0,01111 Limo argilloso 640 32 1,53 4,79 C 0,0 0,0 1,04 0,87 0,01042 Limo argilloso 660 31 1,20 3,87 I 51,7 25,7 0,00 0,00 0,01111 Limo sabbioso 680 30 1,27 4,22 I 52,7 25,1 0,00 0,00 0,01111 Limo sabbioso 700 28 1,00 3,57 I 48,3 26,1 0,00 0,00 0,01190 Limo sabbioso 720 31 1,20 3,87 I 51,7 25,7 0,00 0,00 0,01190 Limo sabbioso 740 30 1,33 4,44 I 53,7 24,7 0,00 0,00 0,01111 Limo sabbioso 740 32 1,40 4,38 I 54,6 24,9 0,00 0,00 0,01111 Limo sabbioso 780 32 1,40 4,38 I 54,6 24,9 0,00 0,00 0,01111 Limo sabbioso 780 30 1,13 3,78 I 50,7 25,8 0,00 0,00 0,01111 Limo sabbioso 800 23 1,40 6,09 C 0,0 0,0 0,095 0,64 0,01449 Limo argilloso 820 27 1,60 5,93 C 0,0 0,0 0,0 1,09 0,72 0,01235 Limo argilloso 840 26 1,67 6,41 C 0,0 0,0 1,09 0,72 0,01235 Limo argilloso 840 26 1,67 6,41 C 0,0 0,0 1,13 0,73 0,01282 Argilla limosa 860 24 1,87 7,78 C 0,0 0,0 1,27 0,80 0,01389 Argilla limosa 860 24 1,87 7,78 C 0,0 0,0 1,27 0,80 0,01389 Argilla limosa 870 30 0,80 2,67 I 44,2 28,2 0,00 0,00 0,01111 Sabbia limosa 870 30 0,80 2,67 I 44,2 28,2 0,00 0,00 0,01111 Sabbia limosa 870 30 0,80 2,67 I 44,2 28,2 0,00 0,00 0,01111 Sabbia limosa 870 30 0,80 2,96 I 44,2 27,4 0,00 0,00 0,01235 Sabbia limosa	,									. ,	
620	3			- 1			, ,				
640							, i			,	· ·
1			′ 1		1		· /				<u> </u>
680         30         1,27         4,22         I         52,7         25,1         0,00         0,00         0,01111         Limo sabbioso           700         28         1,00         3,57         I         48,3         26,1         0,00         0,00         0,01190         Limo sabbioso           720         31         1,20         3,87         I         51,7         25,7         0,00         0,00         0,01075         Limo sabbioso           740         30         1,33         4,44         I         53,7         24,7         0,00         0,00         0,0111         Limo sabbioso           760         32         1,40         4,38         I         54,6         24,9         0,00         0,00         0,01042         Limo sabbioso           780         30         1,13         3,78         I         50,7         25,8         0,00         0,00         0,01111         Limo sabbioso           800         23         1,40         6,09         C         0,0         0,0         0,95         0,64         0,01449         Limo sabbioso           820         27         1,60         5,93         C         0,0         0,0         1,09											
700         28         1,00         3,57         I         48,3         26,1         0,00         0,00         0,01190         Limo sabbioso           720         31         1,20         3,87         I         51,7         25,7         0,00         0,00         0,01075         Limo sabbioso           740         30         1,33         4,44         I         53,7         24,7         0,00         0,00         0,01111         Limo sabbioso           760         32         1,40         4,38         I         54,6         24,9         0,00         0,00         0,01042         Limo sabbioso           780         30         1,13         3,78         I         50,7         25,8         0,00         0,00         0,01042         Limo sabbioso           800         23         1,40         6,09         C         0,0         0,0         0,95         0,64         0,01449         Limo sabbioso           820         27         1,60         5,93         C         0,0         0,0         1,09         0,72         0,01235         Limo argilloso           840         26         1,67         6,41         C         0,0         0,0         1,27										,	
720		- 1	. ,	. ,			, i	· /			
740         30         1,33         4,44         I         53,7         24,7         0,00         0,00         0,01111         Limo sabbioso           760         32         1,40         4,38         I         54,6         24,9         0,00         0,00         0,01042         Limo sabbioso           780         30         1,13         3,78         I         50,7         25,8         0,00         0,00         0,01111         Limo sabbioso           800         23         1,40         6,09         C         0,0         0,0         0,95         0,64         0,01449         Limo argilloso           820         27         1,60         5,93         C         0,0         0,0         1,09         0,72         0,01235         Limo argilloso           840         26         1,67         6,41         C         0,0         0,0         1,27         0,80         0,01389         Argilla limosa           860         24         1,87         7,78         C         0,0         0,0         1,27         0,80         0,01389         Argilla limosa           880         31         1,20         3,87         I         51,7         25,7         0,00	- 1										
760         32         1,40         4,38         I         54,6         24,9         0,00         0,00         0,01042         Limo sabbioso           780         30         1,13         3,78         I         50,7         25,8         0,00         0,00         0,01111         Limo sabbioso           800         23         1,40         6,09         C         0,0         0,0         0,95         0,64         0,01449         Limo argilloso           820         27         1,60         5,93         C         0,0         0,0         1,09         0,72         0,01235         Limo argilloso           840         26         1,67         6,41         C         0,0         0,0         1,13         0,73         0,01282         Argilla limosa           860         24         1,87         7,78         C         0,0         0,0         1,27         0,80         0,01389         Argilla limosa           880         31         1,20         3,87         I         51,7         25,7         0,00         0,01075         Limo sabbioso           Z         Qc         Fs         Rf         Car         Dr         Fi         Cu         Cu	1										
780         30         1,13         3,78         I         50,7         25,8         0,00         0,00         0,01111         Limo sabbioso           800         23         1,40         6,09         C         0,0         0,0         0,95         0,64         0,01449         Limo argilloso           820         27         1,60         5,93         C         0,0         0,0         1,09         0,72         0,01235         Limo argilloso           840         26         1,67         6,41         C         0,0         0,0         1,13         0,73         0,01282         Argilla limosa           860         24         1,87         7,78         C         0,0         0,0         1,27         0,80         0,01389         Argilla limosa           880         31         1,20         3,87         I         51,7         25,7         0,00         0,01075         Limo sabbioso           Z         Qc         Fs         Rf         Car         Dr         Fi         Cu         Cu n.         My         Classificazione           900         30         0,80         2,67         I         44,2         28,2         0,00         0,00								,	, ,		
800       23       1,40       6,09       C       0,0       0,0       0,95       0,64       0,01449       Limo argilloso         820       27       1,60       5,93       C       0,0       0,0       1,09       0,72       0,01235       Limo argilloso         840       26       1,67       6,41       C       0,0       0,0       1,13       0,73       0,01282       Argilla limosa         860       24       1,87       7,78       C       0,0       0,0       1,27       0,80       0,01389       Argilla limosa         880       31       1,20       3,87       I       51,7       25,7       0,00       0,0       0,01075       Limo sabbioso         Z       Qc       Fs       Rf       Car       Dr       Fi       Cu       Cu       Mv       Classificazione         900       30       0,80       2,67       I       44,2       28,2       0,00       0,00       0,01111       Sabbia limosa         920       27       0,80       2,96       I       44,2       27,4       0,00       0,00       0,01235       Sabbia limosa	•					· · · · ·					
820       27       1,60       5,93       C       0,0       0,0       1,09       0,72       0,01235       Limo argilloso         840       26       1,67       6,41       C       0,0       0,0       1,13       0,73       0,01282       Argilla limosa         860       24       1,87       7,78       C       0,0       0,0       1,27       0,80       0,01389       Argilla limosa         880       31       1,20       3,87       I       51,7       25,7       0,00       0,00       0,01075       Limo sabbioso         Z       Qc       Fs       Rf       Car       Dr       Fi       Cu       Cu n.       Mv       Classificazione         900       30       0,80       2,67       I       44,2       28,2       0,00       0,00       0,01111       Sabbia limosa         920       27       0,80       2,96       I       44,2       27,4       0,00       0,00       0,01235       Sabbia limosa										, I	
840								, ,			
Record   R				5,93		, ,	0,0		, ,		•
Sabbia limosa   Sabbia limos					·	- 1					
Z         Qc         Fs         Rf         Car         Dr         Fi         Cu         Cu n.         Mv         Classificazione           900         30         0,80         2,67         I         44,2         28,2         0,00         0,00         0,01111         Sabbia limosa           920         27         0,80         2,96         I         44,2         27,4         0,00         0,00         0,01235         Sabbia limosa	1	24		7,78			0,0				
900   30   0,80   2,67   I   44,2   28,2   0,00   0,00   0,01111   Sabbia limosa 920   27   0,80   2,96   I   44,2   27,4   0,00   0,00   0,01235   Sabbia limosa	880	31	1,20	3,87	I	51,7	25,7	0,00	0,00	0,01075	Limo sabbioso
920 27 0,80 2,96 I 44,2 27,4 0,00 0,00 0,01235 Sabbia limosa	z	Q¢	Fs	Rf	Car	Dr	ы	Cu	Cu n.	Mv	Classificazione
920 27 0,80 2,96 I 44,2 27,4 0,00 0,00 0,01235 Sabbia limosa	900	301	0,80	2,67	I	44,2	28,2	0,00	0,00	0,01111	Sabbia limosa
										· · I	
			- 1		-		- 1	-	- 1	,	

Diagramma di resistenza alla punta




### Elaborazione prova penetrometrica CPT __________

Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :6
Data prova :18/03/2004
Note operative :==

Profondità falda :== (cm) Spinta penetr. :20 (tonn.)

Z =====	Qc	Fs	Rf	Car.	Dr	Fi	Cu	Cu n	Mv	Classific.
40	18	1,20	6,67	С	0,0	0,0	0,82	11,62	0,02778	Argilla limosa
60	14	1,27	9,05	C	0,0	0,0	0,86	8,17	0,03571	Argilla
80	14	1,53	10,95	C	0,0	0,0	1,04	7,41	0,03571	Argilla
100	19	1,53	8,07	С	0,0	0,0	1,04	5,88	0,02632	Argilla limosa
120	24	2,27	9,44	C	0,0	0,0	1,54	7,17	0,01389	Argilla
140	21	2,40	11,43	С	0,0	0,0	1,63	6,48	0,01587	Argilla
160	37	2,20	5,95	C	0,0	0,0	1,50	5,16	0,00901	Limo argilloso
180	36	1,93	5,37	C	0,0	0,0	1,31	4,01	0,00926	Limo argilloso
200	30	2,07	6,89	C	0,0	0,0	1,41	3,83	0,01111	Argilla limosa
220	29	1,60	5,52	С	0,0	0,0	1,09	2,70	0,01149	Limo argilloso
240	30	1,67	5,56	C	0,0	0,0	1,13	2,57	0,01111	Limo argilloso
260	29	1,67	5,75	C	0,0	0,0	1,13	2,37	0,01149	Limo argilloso
280	31	1,40	4,52	C	0,0	0,0	0,95	1,85	0,01075	Limo argilloso
300	33	1,73	5,25	C	0,0	0,0	1,18	2,13	0,01010	Limo argilloso
320	33	1,53	4,65	С	0,0	0,0	1,04	1,77	0,01010	Limo argilloso
340	31	1,73	5,59	C	0,0	0,0	1,18	1,88	0,01075	Limo argilloso
360	36	1,40	3,89	I.	54,6	25,8	0,00	0,00	0,00926	Limo sabbioso
380	33	1,60	4,85	C	0,0	0,0	1,09	1,55	0,01010	Limo argilloso
400	30	1,80	6,00	C	0,0	0,0	1,22	1,66	0,01111	Limo argilloso
420	38	2,20	5,79	С	0,0	0,0	1,50	1,93	0,00877	Limo argilloso
440	43	2,47	5,74	C	0,0	0,0	1,68	2,06	0,00775	Limo argilloso
460	65	1,67	2,56	I	57,9	29,7	0,00	0,00	0,00513	Sabbia limosa
480	48	3,33	6,94	C	0,0	0,0	2,27	2,55	0,00694	Argilla limosa
500	182	2,67	1,47	I	66,6	36,0	0,00	0,00	0,00183	Sabbia
520	216	12,93	5,99	С	0,0	0,0	8,79	9,10	0,00154	Limo argilloso
540	397	4,00	1,01	I	74,2	41,9	0,00	0,00	0,00084	Sabbia ghiaiosa
560	420	_*_	*-	-*	<del>*</del>	*	*	-*-	-*-	-*

# Diagramma di resistenza alla punta



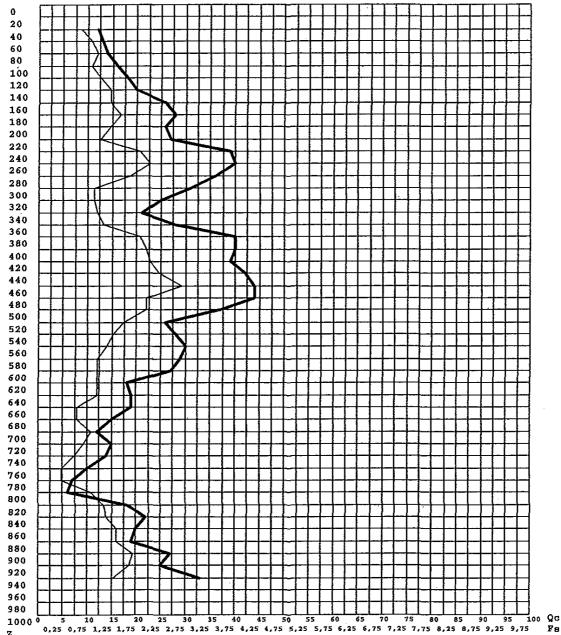
# Prova Penetrometrica Statica

Pagina n.1

Indagine: VA-82-04 Certificato: 77/04 Prova nº 7

Località: Staggia Senese, Via 4 Luglio in data: 09/03/2004

Note sulla committenza: =


Note relative alla prova: =

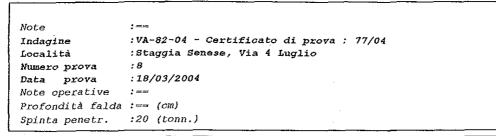
Falda rilevata alla profondità di cm: = Spinta del penetrometro (tonnellate): 20

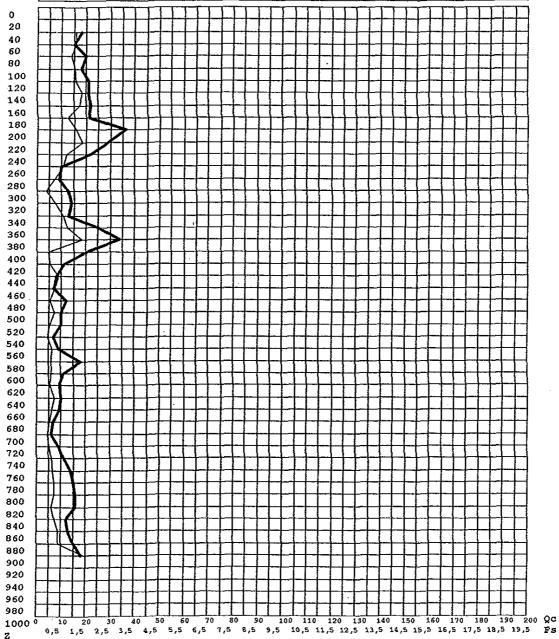
Z	Qc	Fs	Rf	Car	Dr	Ħ	Cu	Cu n.	Mv	Classificazione
40	12	0,87	7,22	C	0,0	0,0	0,59	8,57	0,04167	Argilla limosa
60	13	1,07	8,21	C	0,0	0,0	0,73	6,99	0,03846	Argilla limosa
80	14	1,20	8,57	C	0,0	0,0	0,82	5,87	0,03571	Argilla
100	16	1,07	6,67	С	0,0	0,0	0,73	4,15	0,03125	Argilla limosa
120	18	1,27	7,04	C	0,0	0,0	0,86	4,08	0,02778	Argilla limosa
140	20	1,47	7,33	С	0,0	0,0	1,00	4,03	0,01667	Argilla limosa
160	26	1,47	5,64	С	0,0	0,0	1,00	3,51	0,01282	Limo argilloso
180	28	1,67	5,95	С	0,0	0,0	1,13	3,53	0,01190	Limo argilloso
200	26	1,47	5,64	С	0,0	0,0	1,00	2,79	0,01282	Limo argilloso
220	27	1,27	4,69	С	0,0	0,0	0,86	2,19	0,01235	Limo argilloso
240	39	2,07	5,30	С	0,0	0,0	1,41	3,26	0,00855	Limo argilloso
260	40	2,27	5,67	С	0,0	0,0	1,54	3,28	0,00833	Limo argilloso
280	36	1,87	5,19	C	0,0	0,0	1,27	2,50	0,00926	Limo argilloso
300	31	1,13	3,66	I	50,7	26,1	0,00	0,00	0,01075	Limo sabbioso
320	25	1,13	4,53	C	0,0	0.0	0,77	1,33	0,01333	Limo argilloso
340	21	1,20	5,71	C	0,0	0.0	0,82	1,33	0,01587	Limo argilloso
360	28	1,33	4,76	Č	0,0	0.0	0,91	1,39	0,01190	Limo argilloso
380	40	2,07	5,17	C	0,0	0,0	1,41	2,04	0,00833	Limo argilloso
400	40	2,20	5,50	Č	0,0	0,0	1,50	2,06	0,00833	Limo argilloso
420	39	2,27	5,81	Č	0,0	0,0	1,54	2,02	0,00855	Limo argilloso
440	42	2,47	5,87	$\tilde{c}$	0,0	0,0	1,68	2,09	0,00794	Limo argilloso
460	44	2,93	6,67	Č	0,0	0,0	1,99	2,37	0,00758	Argilla limosa
480	44	2,20	5,00	č	0,0	0,0	1,50	1,70	0,00758	Limo argilloso
500	37	2,20	5,95	č	0,0	0,0	1,50	1,63	0,00901	Limo argilloso
520	26	1,73	6,67	Č	0,0	0,0	1,18	1,23	0,01282	Argilla limosa
540	28	1,53	5,48	č	0,0	0,0	1,04	1,05	0,01190	Limo argilloso
560	30	1,40	4,67	Č	0,0	0,0	0,95	0,92	0,01111	Limo argilloso
580	29	1,20	4,14	I	51,7	25,2	0,00	0,00	0,01149	Limo sabbioso
600	27	1,20	4,44	Ì	51,7	24,6	0,00	0,00	0,01235	Limo sabbioso
620	18	1,20	6,67	Ĉ	0,0	0,0	0,82	0,72	0,02778	Argilla limosa
640	19	1,20	6,32	č	0,0	0,0	0,82	0,70	0,02632	Argilla limosa
660	19	0,80	4,21	ĭ	44,2	24,7	0,00	0,00	0,01754	Limo sabbioso
680	15	0,80	5,33	ĉ	0,0	0,0	0,54	0,44	0,03333	Limo argilloso
700	12	1,07	8,89	č	0,0	0,0	0,73	0,57	0,03353	Argilla
720	15	0,93	6,22	č	0,0	0,0	0,63	0,48	0,03333	Argilla limosa
740	14	0,73	5,24	č	0,0	0,0	0,50	0,37	0,03571	Limo argilloso
760	10	0,47	4,67	c	0,0	0,0	0,32	0,23	0,05000	Limo argilloso
780	7	0,47	6,67	c	0,0	0,0	0,32	0,23	0,07143	Argilla limosa
800	6	1,07	17,78	č	0,0	0,0	0,32	0,50	0,07143	Fango o torba
820	18	1,33	7,41	č	0,0	0,0	0,73	0,50	0,02778	rango o toroa Argiila limosa
840	22	1,40	6,36	c	0,0	0,0	0,91		0,02778	
860	20	1,60	7 1	c	′ 1	, į	· 1	0,63		Argilla limosa
880	19	1,60	8,00	c	0,0	0,0	1,09	0,70	0,01667	Argilla limosa
000	19	1,00	8,42	C	0,0	0,0	1,09	0,68	0,02632	Argilla limosa
z	Qc	Fs	Rf	Car	Dr	Fi	Cu	Cu n.	Mv	Classificazione
900	27	1,93	7,16	C	0,0	0,0	1,31	0,81	0,01235	Argilla limosa
920	25	1,87	7,47	C	0,0	0,0	1,27	0,76	0,01333	Argilla limosa
940	.33	0,00	0,00		0,0	0,0	0,00	0,00	0,00000	

# Diagramma di resistenza alla punta

```
Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :7
Data prova :09/03/2004
Note operative :==
Profondità falda :== (cm)
Spinta penetr. :20 (tonn.)
```




## Elaborazione prova penetrometrica CPT


Note :==
Indagine :VA-82-04 - Certificato di prova : 77/04
Località :Staggia Senese, Via 4 Luglio
Numero prova :8
Data prova :18/03/2004
Note operative :==
Profondità falda :== (cm)

spinta penetr. :20 (tonn.)

Z	Qс	Fs	Rf	Car.	Dr	Fi	Cu	Cu n	Mv	Classific.
40	18	1,60	8,89	C	0,0	0,0	1,09		0,02778	Argilla
60	15.	1,60	10,67	C	0,0	0,0	1,09	10,29	0,03333	Argilla
80	20	1,40	7,00	C	0,0	0,0	0,95	6,68	0,01667	Argilla limosa
100	18	1,53	8,52	C	0,0	0,0	1,04	5,83	0,02778	Argilla limosa
120	21	1,60	7,62	C	0,0	0,0	1,09	5,04	0,01587	Argilla limosa
140	21	1,87	8,89	С	0,0	0,0	1,27	5,02	0,01587	Argilla
160	22	1,73	7,88	С	0,0	0,0	1,18	4,06	0,01515	Argilla limosa
180	21	1,27	6,03	C	0,0	0,0	0,86	2,65	0,01587	Limo argilloso
200	36	1,60	4,44	r	57,1	24,9	0,00	0,00	0,00926	Limo sabbioso
220	29	1,87	6,44	С	0,0	0,0	1,27	3,17	0,01149	Argilla limosa
240	22	1,20	5,45	C	0,0	0,0	0,82	1,87	0,01515	Limo argilloso
260	10	1,07	10,67	C	0,0	0,0	0,73	1,54	0,05000	Argilla
280	9	0,73	8,15	C	0,0	0,0	0,50	0,99	0,05556	Argilla limosa
300	13	0,40	3,08	I	31,2	26,3	0,00	0,00	0,02564	Sabbia limosa
320	14	0,73	5,24	С	0,0	0,0	0,50	0,88	0,03571	Limo argilloso
340	13	1,07	8,21	C	0,0	0,0	0,73	1,20	0,03846	Argilla limosa
360	25	1,27	5,07	С	0,0	0,0	0,86	1,35	0,01333	Limo argilloso
380	34	1,87	5,49	С	0,0	0,0	1,27	1,87	0,00980	Limo argilloso
400	20	0,47	2,33	I	34,1	28,6	0,00	0,00	0,01667	Sabbia limosa
420	1.1	0,53	4,85	С	0,0	0,0	0,36	0,49	0,04545	Limo argilloso
440	8	0,87	10,83	С	0,0	0,0	0,59	0,76	0,06250	Argilla
460	7	0,73	10,48	C	0,0	0,0	0,50	0,62	0,07143	Argilla
480	12	0,53	4,44	I	36,6	24,0	0,00	0,00	0,02778	Limo sabbioso
500	10	0,73	7,33	С	0,0	0,0	0,50	0,57	0,05000	Argilla limosa
520	10	0,53	5,33	C	0,0	0,0	0,36	0,40	0,05000	Limo argilloso
540	7	0,47	6,67	C	0,0	0,0	0,32	0,34	0,07143	Argilla limosa
560	9	0,67	7,41	C	0,0	0,0	0,45	0,46	0,05556	Argilla limosa
580	18	0,60	3,33	I	38,8	26,1	0,00	0,00	0,01852	Limo sabbioso
600	11	0,60	5,45	C	0,0	0,0	0,41	0,39	0,04545	Limo argilloso
620	9	0,53	5,93	C	0,0	0,0	0,36	0,34	0,05556	Limo argilloso
640	10	0,73	7,33	C	0,0	0,0	0,50	0,45	0,05000	Argilla limosa
660	9	0,60	6,67	C	0,0	0,0	0,41	0,36	0,05556	Argilla limosa
680	7	0,53	7,62	C	0,0	0,0	0,36	0,31	0,07143	Argilla limosa
700	6	0,47	7,78	C	0,0	0,0	0,32	0,26	0,08333	Argilla limosa
720	9	0,53	5,93	C	0,0	0,0	0,36	0,29	0;05556	Limo argilloso
740	11	0,60	5,45	C	0,0	0,0	0,41	0,32	0,04545	Limo argilloso
760	14	0,67	4,76	C	0,0	0,0	0,45	0,35	0,03571	Limo argilloso
780	15	0,73	4,89	C	0,0	0,0	0,50	0,37	0,03333	Limo argilloso
800	16	0,73	4,58	C	0,0	0,0	0,50	0,36	0,03125	Limo argilloso
820	16	0,60	3,75	I	38,8	25,2	0,00	0,00	0,02083	Limo sabbioso
840	12	0,73	6,11	C	0,0	0,0	0,50	0,35	0,04167	Argilla limosa
860	13	0,87	6,67	C	0,0	0,0	0,59	0,40	0,03846	Argilla limosa
880	15	0,87	5,78	C	0,0	0,0	0,59	0,39	0,03333	Limo argilloso
900	18	-*-	-*-	_*_	_*_	_*-	-*-	-*-	_*_	-*-

# Diagramma di resistenza alla punta



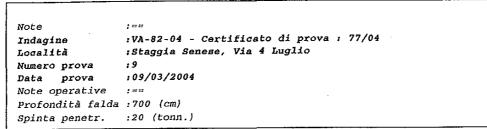


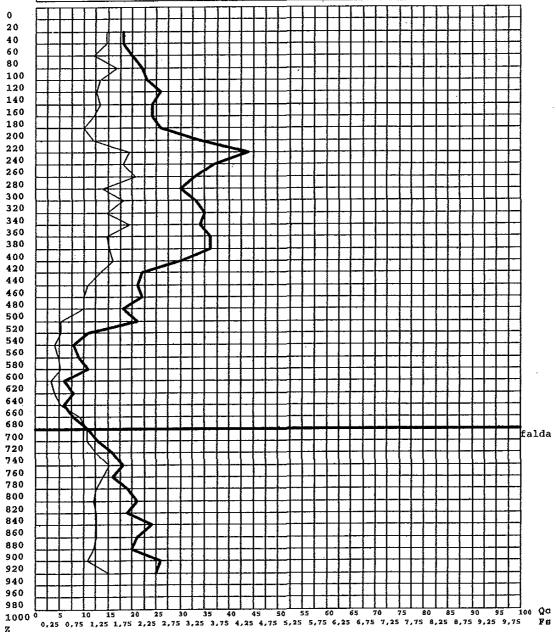
# Prova Penetrometrica Statica

Pagina n.1

Indagine: VA-82-04 Certificato: 77/04 Prova n° 9

Località: Staggia Senese, Via 4 Luglio in data: 09/03/2004


Note sulla committenza: ==

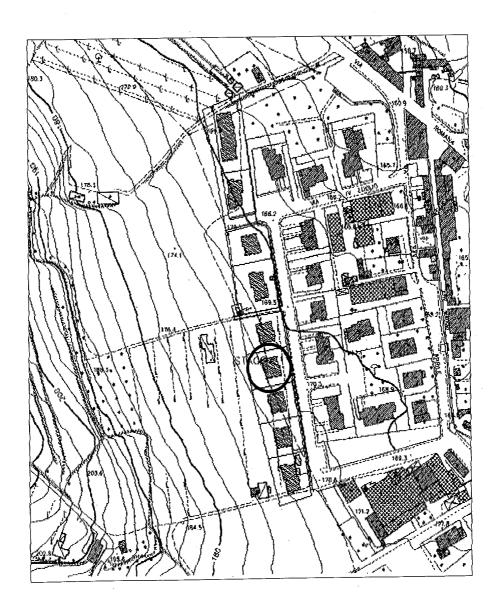

Note relative alla prova: ==

Falda rilevata alla profondità di cm: 700 Spinta del penetrometro (tonnellate): 20

z	Qc	Fs	Rf	Car	Dr	Ħ	Cu	Cu n.	Mv	Classificazione
- 40	18	1,47	8,15	С	0,0	0,0	1,00	14,20	0,02778	Argilla limosa
60	18	1,47	8,15	С	0,0	0,0	1,00	9,36	0,02778	Argilla limosa
80	20	1,20	6,00	C	0,0	0,0	0,82	5,77	0,01667	Limo argilloso
100	22	1,67	7,58	С	0,0	0,0	1,13	6,34	0,01515	Argilla limosa
120	23	1,33	5,80	С	0,0	0,0	0,91	4,23	0,01449	Limo argilloso
140	26	1,27	4,87	C	0,0	0,0	0,86	3,44	0,01282	Limo argilloso
160	24	1,33	5,56	С	0,0	0,0	0,91	3,16	0,01389	Limo argilloso
180	24	1,20	5,00	C	0,0	0,0	0,82	2,53	0,01389	Limo argilloso
200	26	1,00	3,85	I	48,3	25,5	0,00	0,00	0,01282	Limo sabbioso
220	34	1,20	3,53	I	51,7	26,4	0,00	0,00	0,00980	Limo sabbioso
240	44	1,93	4,39	I	60,6	25,1	0,00	0,00	0,00758	Limo sabbioso
260	37	1,80	4,86	C	0,0	0,0	1,22	2,62	0,00901	Limo argilioso
280	33	2,07	6,26	C	0,0	0,0	1,41	2,77	0,01010	Argilla limosa
300	30	1,40	4,67	С	0,0	0,0	0,95	1,75	0,01111	Limo argitloso
320	33	1,80	5,45	C	0,0	0,0	1,22	2,10	0,01010	Limo argilloso
340	35	1,47	4,19	I	55,5	25,3	0,00	0,00	0,00952	Limo sabbioso
360	34	1,93	5,69	C	0,0	0,0	1,31	2,01	0,00980	Limo argilloso
380	36	1,47	4,07	I	55,5	25,5	0,00	0,00	0,00926	Limo sabbioso
400	36	1,53	4,26	Ī	56,3	25,2	0,00	0,00	0,00926	Limo sabbioso
420	30	1,60	5,33	Ċ	0,0	0,0	1,09	1,42	0,01111	Limo argilloso
440	22	1,33	6,06	č	0,0	0,0	0,91	1,13	0,01515	Limo argilloso
460	21	1,07	5,08	Č	0,0	0,0	0,73	0,87	0,01587	Limo argilloso
480	22	1,00	4,55	č	0,0	0,0	0,68	0,78	0,01515	Limo argilloso
500	18	1,00	5,56	C	0,0	0,0	0,68	0,75	0,02778	Limo argilloso
520	21	0,53	2,54	ĭ	36,6	28,1	0,00	0,00	0,01587	Sabbia limosa
540	11	0,53	4,85	Ĉ	0,0	0,0	0,36	0,37	0,04545	Limo argilloso
560	8	0,40	5,00	č	0,0	0,0	0.27	0.27	0,06250	Limo argilioso
580	او	0,47	5,19	Č	0,0	0,0	0,32	0,31	0,05556	Limo argilloso
600	11	0,53	4,85	Č	0.0	0,0	0,36	0.34	0.04545	Limo argilloso
620	6	0,33	5,56	č	0,0	0,0	0,23	0,21	0,08333	Limo argilloso
640	8	0,40	5,00	čl	0,0	0,0	0,27	0.24	0,06250	Limo argilloso
660	6	0,53	8,89	č	0,0	0,0	0,36	0,31	0,08333	Argilla
680	8	0.93	11,67	č	0,0	0,0	0,63	0.53	0,06250	Argilla
700	11	1,07	9,70	č	0,0	0,0	0,73	0,60	0,04545	Argilla
720	13	1,07	8,21	č	0,0	0,0	0,73	0,59	0.03846	Argilla limosa
740	16	1,27	7,92	č	0,0	0,0	0,86	0,69	0,03125	Argilla limosa
760	18	1,53	8,52	č	0,0	0,0	1,04	0,83	0,02778	Argilla limosa
780	16	1,40	8,75	č	0,0	0,0	0.95	0,75	0.03125	Argilla
800	19	1,27	6,67	č	0,0	0,0	0,86	0,67	0,02632	Argilla limosa
820	21	1,20	5,71	č	0,0	0,0	0,82	0,62	0,01587	Limo argilloso
840	19	1,27	6,67	č	0,0	0,0	0,86	0,65	0,02632	Argilla limosa
860	24	1,27	5,28	č	0,0	0,0	0,86	0,64	0,02032	Limo argilloso
880	21	1,27	6,03	c	0,0	0,0	0,86	0,64	0,01587	Limo argilloso
900	41	1,4/	0,05		0,0 }	V,V	0,00	0,04	0,01307 ]	Dino agnoso
Z	Qc	Fs	Rf	Car	Dr	ħ	Cu	Cun	Mv	Classificazione
900	20	1,20	6,00	С	0,0	0,0	0,82	0,60	0,01667	Limo argilloso
920	26	1,07	4,10	ĭ	49,5	25,1	0.00	0,00	0,01282	Limo sabbioso
940	25	0,00	0,00	*	0,0	0,0	0,00	0,00	0,00000	•
, 770 ]	23]	0,00	0,00	Ì	0,0	0,0 [	0,00	0,00,1	0,00000	I

Diagramma di resistenza alla punta






# Comune di Poggibonsi

(Provincia di Siena)

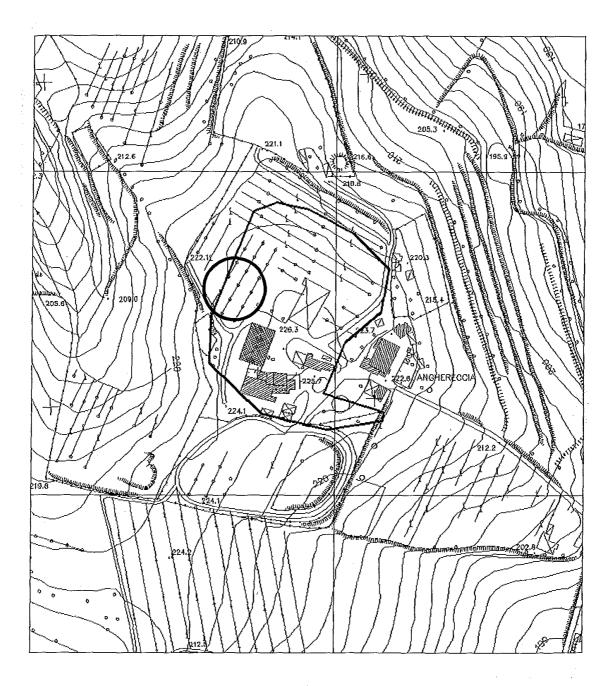
Scheda Indagine n.:	205
RIFERIMENTO PRATICA EDILIZIA:	06/0801
Località:	via <b>IV</b> luglio – <b>P</b> oggibonsi
Progetto:	Perforazione di pozzo ad uso domestico
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 stratigrafia pozzo
Data Indagine:	10/05/2007
<b>N</b> оте:	

# UBICAZIONE DELL'AREA



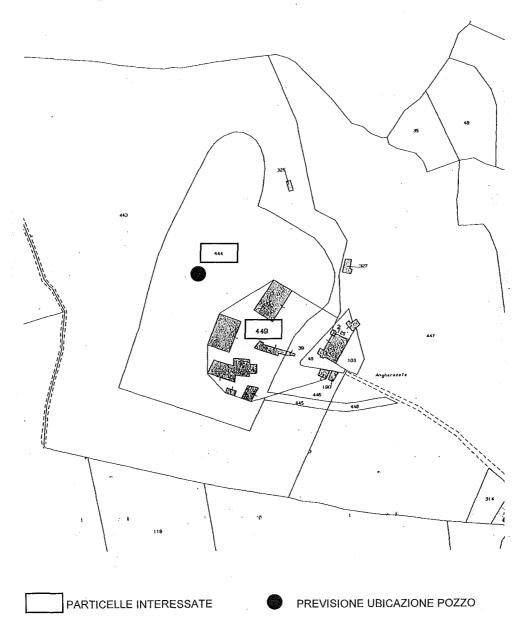


AREA DI INDAGINE


# caratteristiche della perforazione

profondità dal piano di campagna	descrizione litologica
0-4	limo sabbioso
4-10	travertino in formazione
10-13	limo sabbioso
13-20	travertino in formazione con livelli compatti

# Comune di Poggibonsi


(Provincia di Siena)

Scheda Indagine n.:	206
RIFERIMENTO PRATICA EDILIZIA:	08/0517
Località:	LOC. ANGHERETA – COMUNE DI POGGIBONSI
Ркодетто:	PERFORAZIONE DI POZZO AD USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	16/12/2008
<b>N</b> оте:	





# PARTICELLE INTERESSATE N. 444 E N. 449 FOGLIO N° 62 del N.C.T.



ETÀ	Profondità (m) dal p.c.	Profilo Litologico	Carota	Camp.	descrizione litologica
	0 -30				Travitation
	30-57				Lima papido didio
	57-85				Ostribo du Teavertui ca sino pobrioso
	85-100		İ	Ì	Limo orgalesto

# **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

**SCHEDA INDAGINE N.:** 

207

**RIFERIMENTO PRATICA** 

**EDILIZIA:** 

07/0929

LOCALITÀ:

LOC. ANGHERECCIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

REALIZZAZIONE DI COMPLESSO EDILIZIO A

**DESTINAZIONE RESIDENZIALE** 

**N**UMERO E TIPO DI INDAGINE:

3 CAROTAGGI CONTINUI

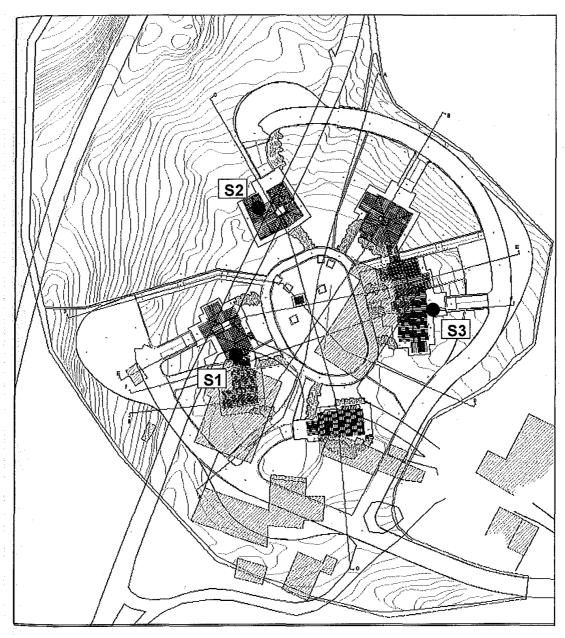
6 CAMPIONI PER PROVE DI LABORATORIO

**ALLEGATI:** 

3 CAROTAGGI CONTINUI

1 TABELLA RIASSUNTIVA PROVE DI LABORATORIO

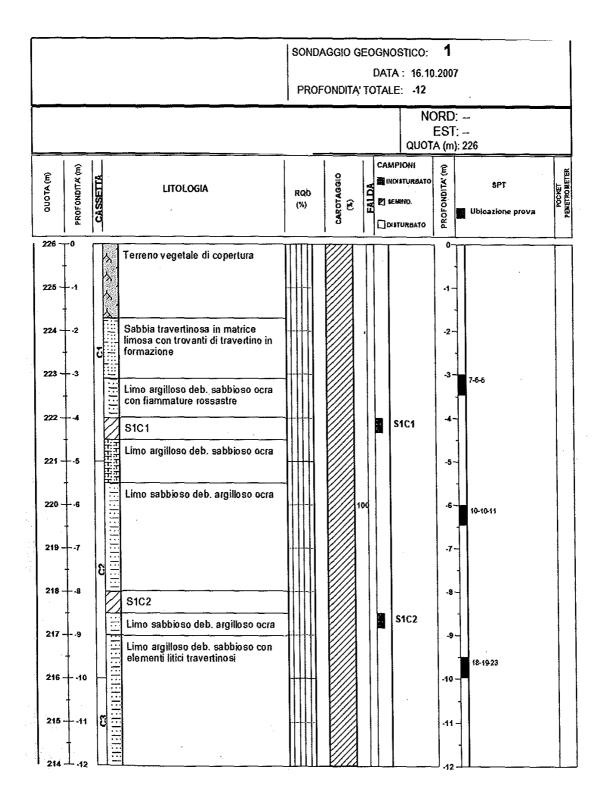
**DATA INDAGINE:** 

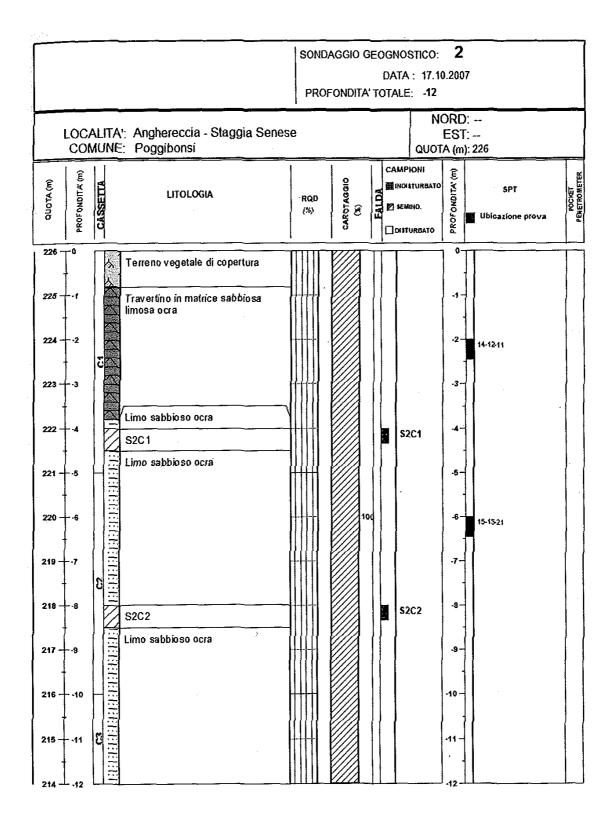

16/10/2007

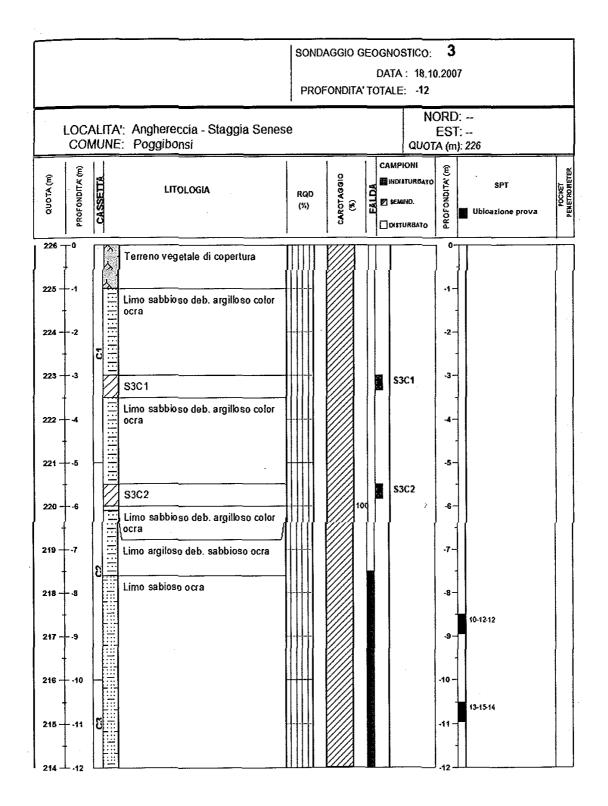
**NOTE:** 

in relazione non sono riportati i certificati

delle prove


# COROGRAFIA UBICATIVA INDAGINE GEOGNOSTICA





# LEGENDA:

Sondaggio geognostico









Firenze lì 14/11/07	LOCALITA': Staggia, Poggibonsi (SI)
l.	

CAMPIONE	S1C1	S1C2	S2C1	S2C2	S3C1	S3C2
Profondità metri	4.0 - 4.5	8.0 - 8.5	4.0 - 4.5	8.0 - 8.5	3.0 - 3.5	5.5 - <u>6</u> .0
Prova di taglio						
C (kPa)	31.6	12.9		11,3		
φ (°)	19.9	28.0		31.3		
Prova edometrica						
RR (rapporto di ricompressione)	0.01289		0.02928		0.01085	
RR' (rapporto di ricompressione)	0.01969		0.00575		0.01018	
CR (rapporto di compressione)	0.09504		0.12152		0.11641	
SR (rapporto di rigonfiamento)	0.04117		0.02207		0.03234	
Parametri fisici						
Peso volume naturale (kN/m³)	20.4	19.8	17.7	19.3	19.5	

# S1C1:

0-23 cm limo argilloso molto consistente; 23 - 38 cm elementi litici in matrice limo argillosa colore marrone oliva chiaro

### S1C2:

0 - 57 cm limo argilloso sabbioso molto consistente: colore giallo oliva - giallo marroncino

### S2C1:

0 - 45 cm limo argilloso sabbioso consistente; colore giallo marroncino

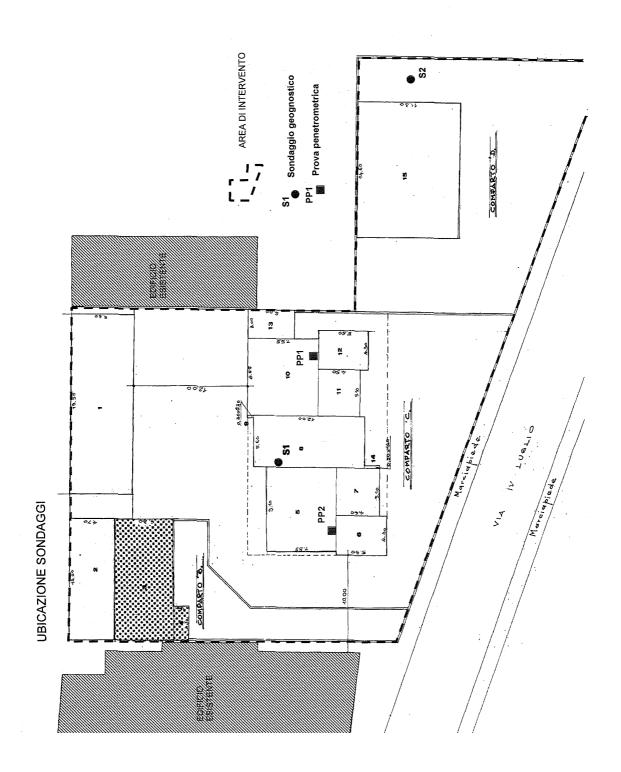
## S2C2:

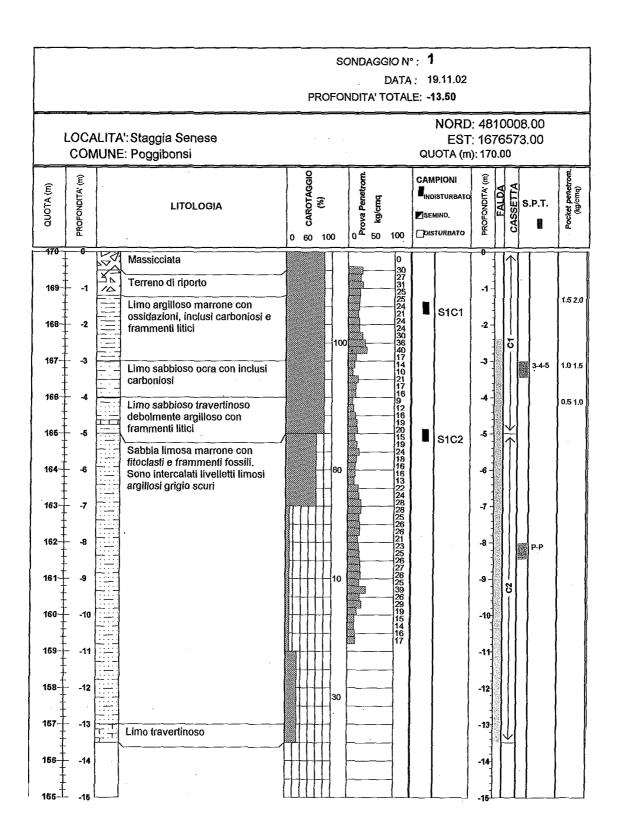
0 - 35 cm limo sabbioso argilloso consistente; colore giallo oliva - giallo marroneino

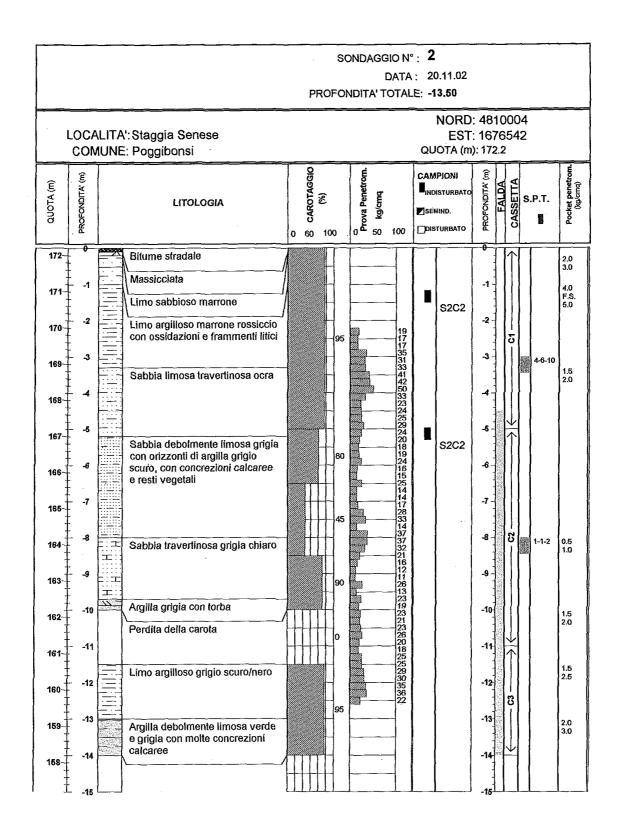
### \$3C1:

0 - 50 cm limo argilloso sabbioso molto consistente; colore giallo marroneino

# S3C2:


0 - 20 cm limo argilloso debolmente sabbioso consistente;


20 - 44 cm limo argilloso sabbioso consistente; colore giallo oliva


# Comune di Poggibonsi

(Provincia di Siena)

Scheda Indagine n.:	208
RIFERIMENTO PRATICA EDILIZIA:	03/0122
Località:	LOC. STAGGIA SENESE – COMUNE DI POGGIBONSI
Progetto:	REALIZZAZIONE DI FABBRICATI PER CIVILE ABITAZIONE
Numero e Tipo di Indagine:	
	2 CAROTAGGI CONTINUI
	4 CAMPIONI PER PROVE DI LABORATORIO
	4 PROVE PENETROMETRICHE SPT
	2 PROVE PENETROMETRICHE CPT
Allegati:	2
	2 CAROTAGGI CONTINUI
	4 CERTIFICATI DI LABORATORIO 4 CERTIFICATI PROVA SPT
	2 CERTIFICATI PROVA CPT
Data Indagine:	19/11/2002
<b>N</b> оте:	







# Apertura Campione (Racc. AGI 1977)

Pocket Penetrometer:

Pocket Vane Test:

Data esecuzione: 22/11/2002

22/11/2002

Data consegna: Sondaggio: Prof. (m):

Cantiere:

Campione:

da 1.50 a 1.85

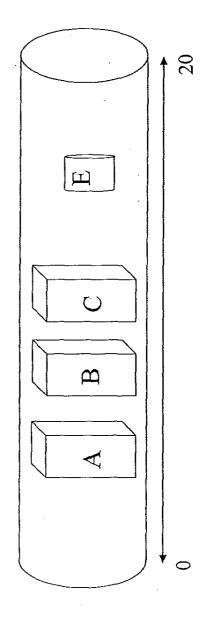
Modalità di campionatura: Qualità del campione:

Camp. Shelby

\$

Via della Pace e Via IV Luglio, Staggia S. (SI)

Taglio UU Taglio UU Provino per: Provino per:


Taglio UU Provino per:

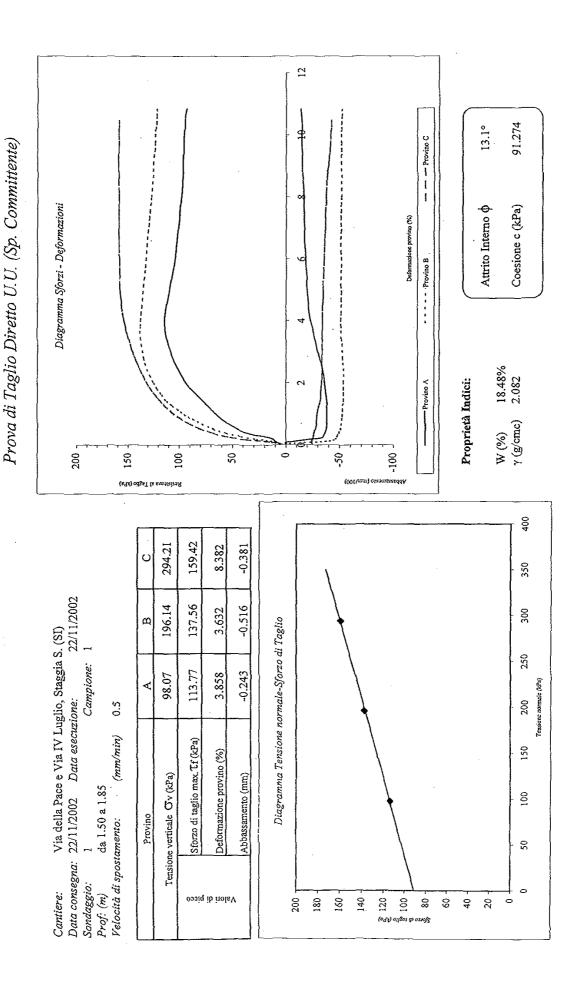
Provino per: Edometria A M U A

Prove richieste:

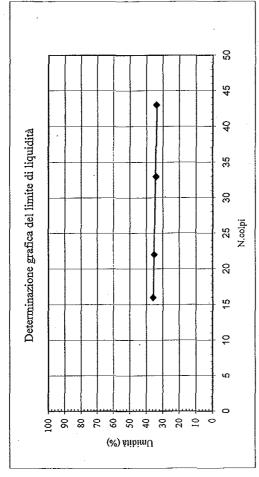
Compressione edometrica IL fino a 16 Kg/cmq Taglio diretto, non consolidato non drenato Limiti di liquidità e plasticità

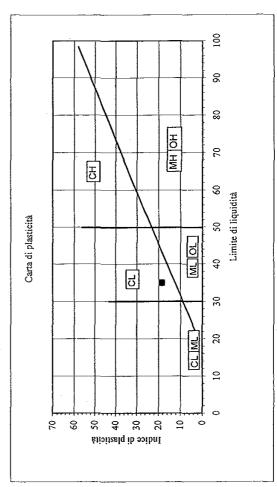
Alto




con ossidazioni, inclusi carboniosi e frammenti

litici plurimillimetrici.


Descrizione sommaria non impegnativa:


Limo argilloso marrone rossiccio

(Rif. Munsell 10YR4/3 Brown)



Limiti di Atterberg (ASTM D4318-D427)





gia S. (SI)	22/11/2002	ne: 1
Via della Pace e Via IV Luglio, Staggia S. (SI)	Data esecuzione:	Campione:
Via della Pac	22/11/2002	
Cantiere:	Data consegna: 22/11/2002	Sondaggio:

(%) W

Proprietà Indici:

Sondaggio: Prof. (m):

35.00 % 16.50 % 18.50 % 0.89 n.rich. Indice di consistenza Limite di plasticità Indice di plasticità Limite di liquidità Limite di ritiro da 1.50 a 1.85

Profondità (m):

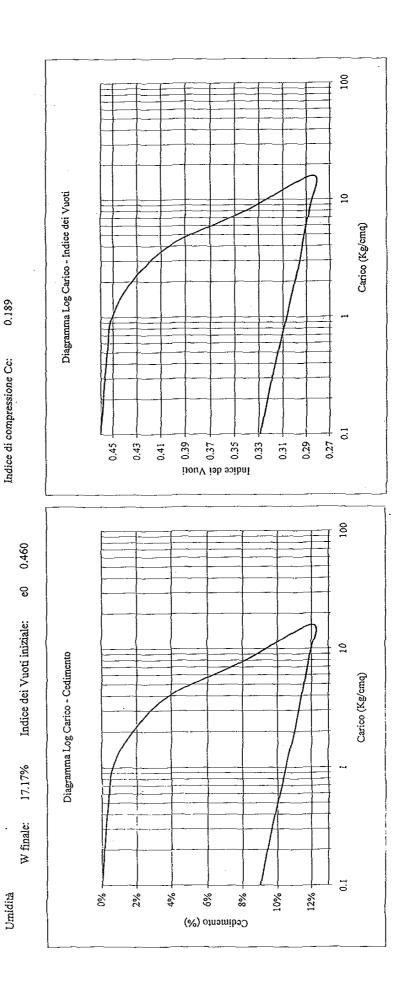
Sondaggio: Campione:

22/11/2002 22/11/2002

Data consegna campione:

Cantiere:

Data inizio prova:


Proprietà Indici

Via della Pace e Via IV Luglio, Staggia S. (SI)

γ 2.005 gr/cmc

Peso di Volume:

W iniziale: 18.48%



Via della Pace e Via IV Luglio, Staggia S. (ST) Cantiere:

22/11/2002 Data consegna campione: Data inizio prova:

22/11/2002

Sondaggio: Campione:

da 1.50 a 1.85 Profondità (m):

av nq/Kg)	0.0114	0.0104	0.0076	0.0165	0.0154	0.0156	0.0071	0.0004	0.0021	0.0094	0.0265	0.0531
a 1) (cmq	1 :	]	,			j	1	0.0	0.0	0.0	0.0	0.0
Med (Kg/cmc	127.907	141.026	192.982	88.353	94,828	93.518	205.607					
mv Med av (cmq/Kg) (Kg/cmq) (cmq/Kg)	0.0078	0.0071	0.0052	0.0113	0,0105	0.0107	0.0049	0.0003	0.0014	0.0065	0.0182	0.0364
e ()	0.457	0.455	0.451	0.434	0.404	0.341	0.284	0.288	0.300	0.314	0.321	0.329
ΔΗ/H0 %	0.0020	0.0037	0.0063	0.0176	0.0387	0.0815	0.1204	0.1182	0.1097	0.1000	0.0955	0.0900
ΔH (cm)	0.0043	0.0082	0.0139	0.0388	0.0852	0.1793	0.2649	0.26	0.2413	0.22	0.21	0.198
cmq)	0.25	0.5	,	2	4	8	16	8	2	0.5	0.25	0.1
σ v (Kg/ cmq)		0.25	0.5	,	. 2	4	∞.	16	8	7	5.0	0.25
L	<u></u>											
Diagramma Log Carico - Log. Modulo Edometrico	1000		001			10					0.1 10 100	Carico (Kg/cmq)

# Apertura Campione (Racc. AGI 1977)

Via della Pace e Via IV Luglio, Staggia S. (SI)

Cantiere:

Data esecutione: 22/11/2002 Campione: 22/11/2002 da 5.00 a 5.60 Data consegna: Sondaggio: Prof. (m):

Camp. Shelby Modalità di campionatura: Qualità del campione: Prove richieste:

Taglio UU Taglio UU

Provino per: Edometria

Provino per:

A B O B

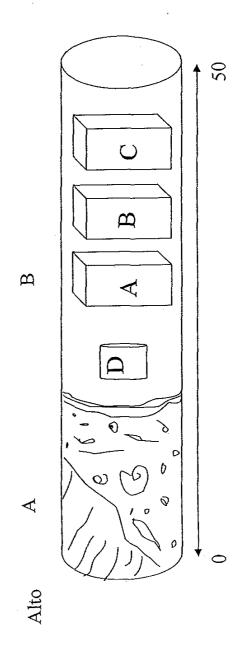
Taglio UU

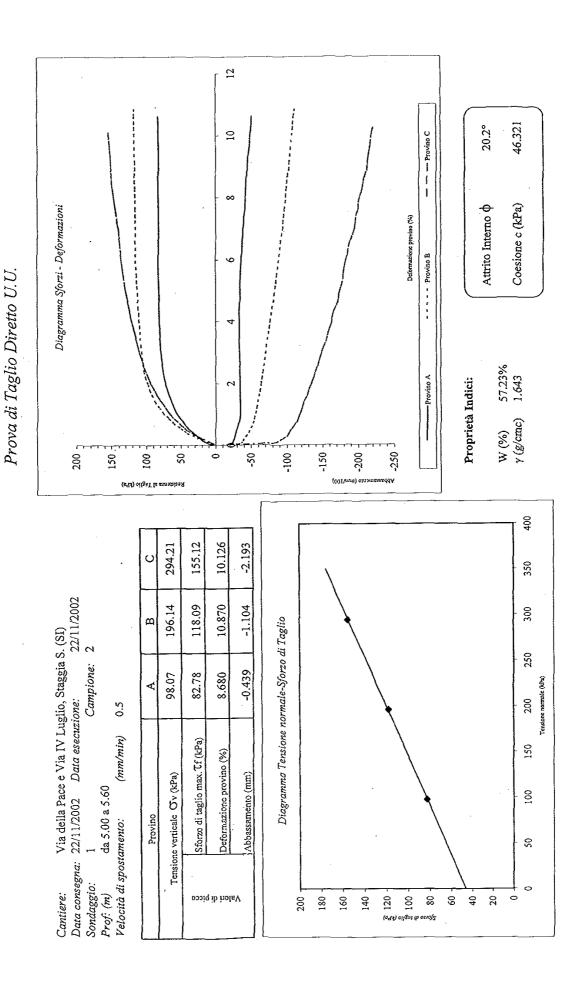
Provino per: Provino per:

Pocket Penetrometer:

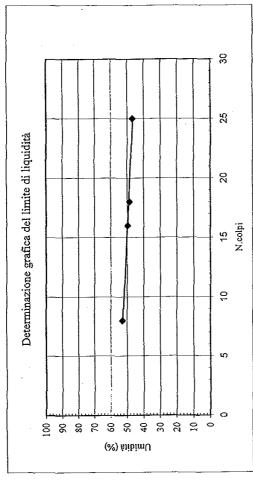
Pocket Vane Test:

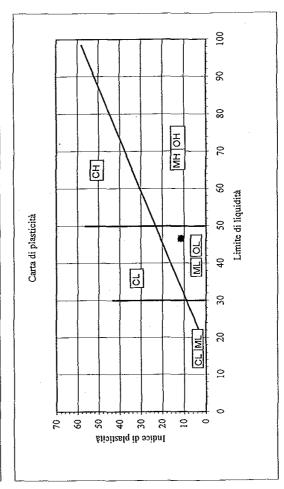
Compressione edometrica IL fino a 16 Kg/cmq Taglio diretto, non consolidato non drenato


Limiti di liquidità e plasticità


Tratto A Sabbia in matrice limosa marrone (Rif. Munsell 2.5Y6/3 Light Yellowish Brown)

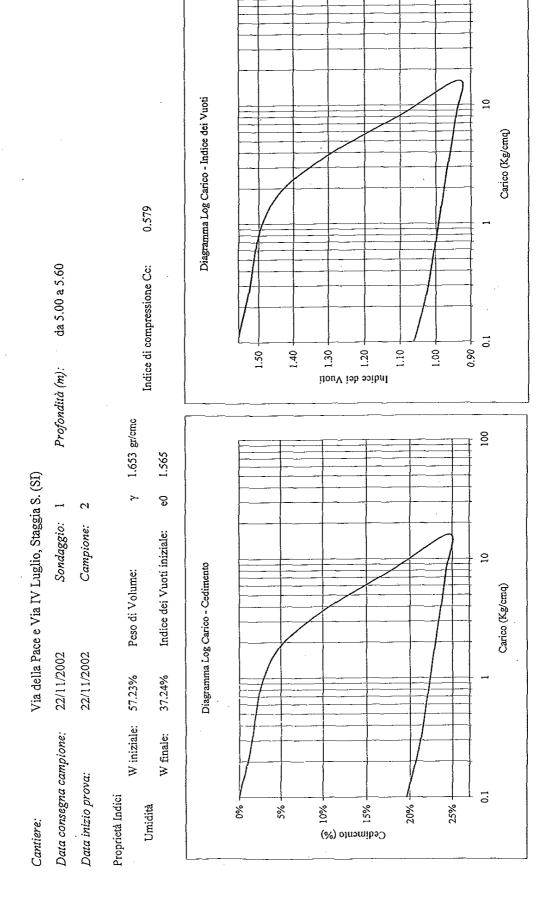
Descrizione sommaria non impegnativa:


con fitoclasti e frammenti fossili


Tratto B Limo argilloso grigio scuro. con orizzonti sabbiosi (Rif. Munsell 2.5Y3/2 Very dark graysh brown)






Limiti di Atterberg (ASTM D4318-D427)





Via della Pace e Via IV Luglio, Staggia S. (SI) 22/11/2002 Data esecuzione: 22/11/2002 1 Campione: 2 da 5.00 a 5.60				,
e e Via IV Lu Data esecuz 0		Tratto A	Tratto B	
Via della Pace 22/11/2002 1 da 5.00 a 5.60	.2	40.78	57.23	
Cantiere: Via della Pace e Via IV Luglio, S Data consegna: 22/11/2002 Data esecuzione: Sondaggio: 1 Prof. (m): da 5.00 a 5.60	Proprietà Indici:	W (%)	W (%)	

46.54 %	35.24 %	11.30 %	-0.95	non rich.	
Limite di liquidità	Limite di plasticità	Indice di plasticità	Indice di consistenza	Limite di ritiro	



100

Via della Pace e Via IV Luglio, Staggia S. (SI)

Cantiere:

Data consegna campione: 22/11/2002 Data inizio prova: 22/11/2002

Sondaggio: 1

Campione: 2 Pr

Profondità (m): da 5.00 a 5.60

metrico	(Kgy	σν (Kg/ cmq) a	(cm)	∆H/H0 %	<b>o</b> ①	mv (cmq/Kg)	mv Med av (cmq/Kg) (Kg/cmq) (cmq/Kg)	av (cmq/Kg)
	0	0.25	0.0291	0.0132	1.531	0.0529	18.900	0.1357
	0.25	0.5	0.044	0.0200	1.514	0.0271	36.913	0.0695
	0.5	1	0.0641	0.0291	1.490	0.0183	54.726	0.0469
		2	0.1175	0.0534	1.428	0.0243	41.199	0.0623
	7	4	0.2361	0.1073	1.290	0.0270	37.099	0.0691
	4	8	0.3925	0.1784	1.107	0.0178	56.266	0.0456
	8	16	0.542	0.2464	0.933	0.0085	117.726	0.0218
	16	8	0.534	0.2427	0.942	0.0005		0.0012
	8	2	0.5051	0.2296	0.976	0.0022		0.0056
	2	0.5	0.477	0.2168	1.009	0.0085		0.0218
10 100	0.5	0.25	0.461	0.2095	1.028	0.0291		0.0746
	0.25	0.1	0.431	0.1959	1.063	0.0909		0.2332

# Apertura Campione (Racc. AGI 1977)

Pocket Penetrometer:

Pocket Vane Test:

Via della Pace e Via IV Luglio, Staggia S. (SI) 22/11/2002 Data esecuzione: 22/11/2002

Sondaggio: 2 Campione: Prof. (m): da 1.50 a 1.90

Data consegna:

Cantiere:

Modalità di campionatura: Camp. Shelby Qualità del campione: Q5

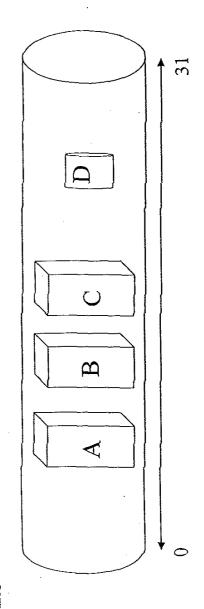
Descrizione sommaria non impegnativa: Argilla limosa marrone rossiccio

(Rif. Munsell 10YR4/4 Dark Yellowish Brown) con ossidazioni, frammenti litici millimetrici e centimetrici.

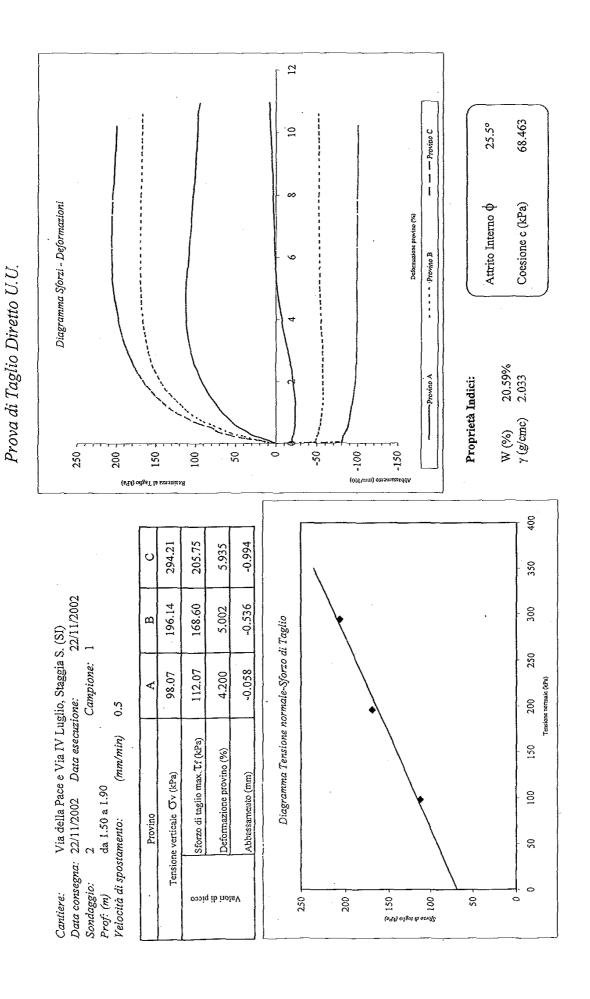
Prove richieste:
Compressione edometrica IL, fino a 16 Kg/cmq
Taglio diretto, non consolidato non drenato

Taglio UU Taglio UU Taglio UU

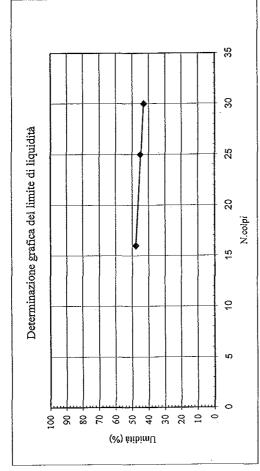
Provino per: Provino per:

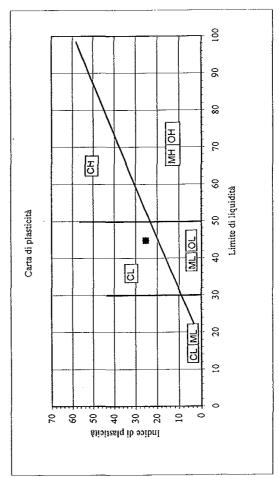

A B O D

Provino per:


Provino per:

Edometria


Limiti di liquidità e plasticità




Alto



Limiti di Atterberg (ASTM D4318-D427)





. (SI)	22/11/2002	
Via della Pace e Via IV Luglio, Staggia S. (SI)	Data esecuzione:	Campione:
Via della Pac	22/11/2002	2
Cantiere:	Data consegna: 22/11/2002	Sondaggio:

da 1.50 a 1.90

Sondaggio: Prof. (m): Proprietà Indici:

(%) ₩

Limite di liquidità 44.80 %
Limite di plasticità 19.57 %
Indice di plasticità 25.23 %
Indice di consistenza 0.96
Limite di ritiro Non rich.

da 1.50 a 1.90

Profondità (m):

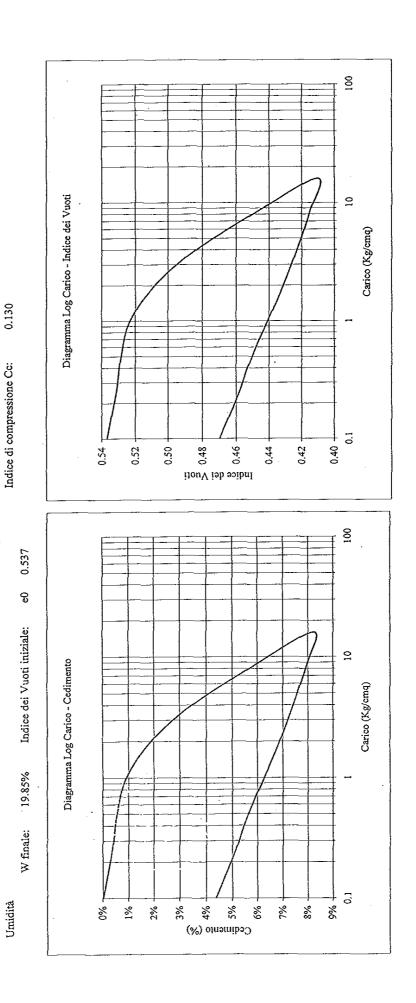
Sondaggio: 2 Campione: 1

22/11/2002 22/11/2002

Data consegna campione:

Cantiere:

Data inizio prova:


Proprietà Indici

Via della Pace e Via IV Luglio, Staggia S. (SI)

2.032 gr/cmc

Peso di Volume:

W iniziale: 20.59%



Via della Pace e Via IV Luglio, Staggia S. (SI)

Cantiere:

22/11/2002 22/11/2002 Data consegna campione: Data inizio prova:

Sondaggio: Campione:

da 1.50 a 1.90 Profondità (m):

	ь	> b	ΗV	ΔH/H0	9	νm	Med	av
	(Kg/ da	(Kg/ cmq) a a	(cm)	%	①	(cmq/Kg)	(cmq/Kg) (Kg/cmq) (cmq/Kg)	(cmq/Kg)
	0	0.25	0.008	0.0036	0.531	0.0145	68.750	0.0224
	0.25	0.5	0.012	0.0055	0.529	0.0073	137.500	0.0112
	0.5	1	0.02	0.0091	0.523	0.0073	137.500	0.0112
	-	. 2	0.0414	0.0188	0.508	0.0097	102.804	0.0150
	2	4	. 0.0764	0.0347	0.484	0.0080	125.714	0.0122
	4	8	0.125	0.0568	0.450	0.0055	181.070	0.0085
	8	16	0.1812	0.0824	0.410	0.0032	313.167	0.0049
	16	8	0.174	0.0791	0.415	0.0004		0.0006
	8	2	0.1512	0.0687	0.431	0.0017		0.0027
	2	0.5	0.124	0.0564	0.450	0.0082		0.0127
100	0.5	0.25	0.113	0.0514	0.458	0.0200		0.0307
	0.25	0.1	0.096	0.0436	0.470	0.0515		0.0792

# Apertura Campione (Racc. AGI 1977)

Pocket Penetrometer:

Pocket Vane Test:

Cantiere: Via della Pace e Via IV Luglio, Staggia S. (SI)

Data consegna: 22/11/2002 Data esecuzione: 22/11/2002

Data consegna: 22/11/2002 Data esecuzione: 22/ Sondaggio: 2 Campione: 2 Prof. (m): da 5.30 a 5.80

Modalità di campionatura: Camp. Shelby Qualità del campione: Q5 Prove richieste:

Taglio UU

A B O D

Edometria

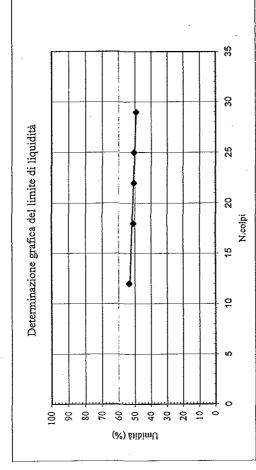
Taglio UU Taglio UU

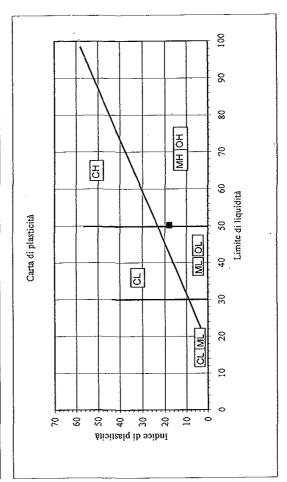
Provino per: Provino per: Provino per: Provino per: Compressione edometrica IL fino a 16 Kg/cmq Taglio diretto, non consolidato non drenato Limiti di liquidità e plasticità

e resti vegetali, fetida.


(Rif. Munsell 2.5Y3/2 Very Dark Graysh Brown) con concrezioni

(Rif. Munsell 2.5Y6/3 Light Yellowish Brown) Tratto B Argilla grigio scuro con tratti sabbiosi


Tratto A Sabbia in matrice limosa marrone chiaro


Descrizione sommaria non impegnativa:

31 B  $\mathfrak{A}$ ⋖ O 5



# Limiti di Atterberg (ASTM D4318-D427)





Cantiere: Data consegna: Sondaggio: Prof. (m):	Via della Pace 22/11/2002 2 da 5.30 a 5.80	Cantiere: Via della Pace e Via IV Luglio, Staggia S. (SI) Data consegna: 22/11/2002 Data esecuzione: 22/11/2002 Sondaggio: 2 Prof. (m): da 5.30 a 5.80
Proprietà Indici:	.g	
W (%)	48.25	Tratto A
W (%)	57.42	Tratto B

Limite di liquidità 50.25 %
Limite di plasticità 32.26 %
Indice di plasticità 18.00 %
Indice di consistenza -0.40
Limite di ritiro Non rich.

Diagramma Log Carico - Indice dei Vuoti 0.727 da 5.30 a 5.80 Indice di compressione Cc: 1.50 Indice dei Vuoti 1.00 1.60 1.40 Profondità (m): 1.676 gr/cmc 1.645 Via della Pace e Via IV Luglio, Staggia S. (SI) රි Sondaggio: 2 Campione: Indice dei Vuoti iniziale: Diagramma Log Carico - Cedimento Peso di Volume: 22/11/2002 22/11/2002 36.89% W iniziale: 57.44% Data consegna campione: W finale: Data inizio prova: Proprietà Indici Umidità 25% % % 10% Cedimento (%) Cantiere:

8

Carico (Kg/cmq)

→ 0.90 1.0

100

2

0.1

30%

Carico (Kg/cmq)

Via della Pace e Via IV Luglio, Staggia S. (SI)

22/11/2002 22/11/2002 Data consegna campione: Data inizio prova:

Sondaggio: Campione:

Profondiià (m):

da 5.30 a 5.80

	۵ د	>	ΔH	∆H/H0	မ	νш	Med	av
Diagramma Log Carico - Log. Modulo Edometrico	(Kg/ cmq) da a	cmq) a	(cm)	%	① ·	(cmq/Kg)	(cmq/Kg) (Kg/cmq) (cmq/Kg)	(cmq/Kg)
	0	0.25	0.013	0.0065	1.628	0.0260	38.462	0.0688
	0.25	0.5	0.023	0.0115	1.615	0.0200	50.000	0.0529
	0.5	1	0.033	0.0165	1.601	0.0100	100.000	0.0265
		2	0.0681	0.0341	1.555	0.0176	56.980	0.0464
	2	4	0.1629	0.0815	1.430	0.0237	42.194	0.0627
	4	8	0.3675	0.1838	1.159	0.0256	39.101	0.0676
	8	16	0.533	0.2665	0.940	0.0103	96.677	0.0274
	16	8	0.5208	0.2604	0.956	0.0008	**	0.0020
	∞	2	0.4815	0.2408	1.008	0.0033		0.0087
	7	0.5	0.422	0.2110	1.087	0.0198	**************************************	0.0525
10 100	0.5	0.25	0.389	0.1945	1.131	0.0660		0.1746
Carico (Kg/cmq)	0.25	0.1	0.35	0.1750	1.182	0.1300		0.3439

0.1

10

Modulo Edometrico (Kg/cmq)

901

PROGETTO Fabbricati per civile abitazione
LOCALITA' Staggia Senese

PROVA S.P.T. n° 1

QUOTA ESECUZIONE DELLA DA m. 167.00 A m. 166.55
PROFONDITA 'DI ESECUZIONE DAL P.C. -3.00 A m. 3.45
TIPO DI MAGLIO: PILCON-NENZI
RIFIUTO ALL'AVANZAMENTO: 0 cm.

SONDAGGIO N° 1

PROFONDITA' MASSIMA SONDAGGIO (m) 13.5

QUOTA DEL SONDAGGIO (m) 170

METODO DI PERFORAZIONE: CAROTAGGIO CONTINUO

QUOTA FALDA: 2.50

RIVESTIMENTI: NON UTILIZZATO

FLUIDO DI PERFORAZIONE: NON UTILIZZATO

LITOLOGIA PREVALENTE INCOERENTE



PROGETTO Fabbricati per civile abitazione LOCALITA' Staggia Senese

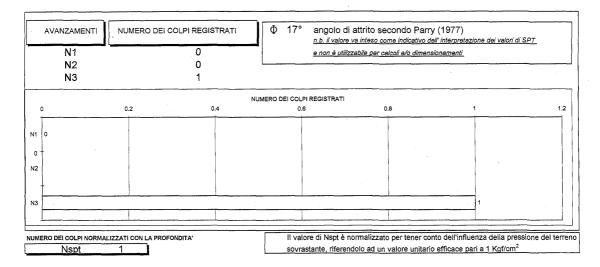
PROVA S.P.T. n° 2

QUOTA ESECUZIONE DELLA DA m. 162.00 A m. 161.55
PROFONDITA 'DI ESECUZIONE DAL P.C. -8.00 A m. 8.45

TIPO DI MAGLIO : PILCON-NENZI RIFIUTO ALL'AVANZAMENTO : 0 cm.

SONDAGGIO Nº 1

PROFONDITA' MASSIMA SONDAGGIO (m) 13.5


QUOTA DEL SONDAGGIO (m) 170

METODO DI PERFORAZIONE: CAROTAGGIO CONTINUO

QUOTA FALDA: 2.50

RIVESTIMENTI: NON UTILIZZATO

FLUIDO DI PERFORAZIONE: NON UTILIZZATO LITOLOGIA PREVALENTE INCOERENTE



PROGETTO Fabbricati per civile abitazione LOCALITA' Staggia Senese

PROVA S.P.T. n°

QUOTA ESECUZIONE DELLA DA m. 169.20 A m. 168.75

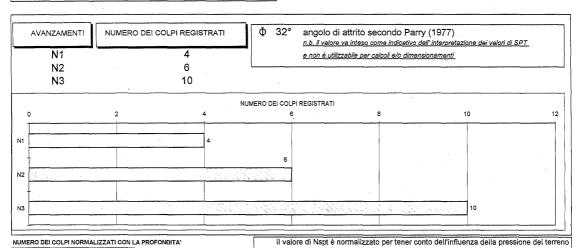
PROFONDITA 'DI ESECUZIONE DAL P.C. -3.00 A m. 3.45

PILCON-NENZI TIPO DI MAGLIO : RIFIUTO ALL'AVANZAMENTO : 0

SONDAGGIO N° 2

PROFONDITA' MASSIMA SONDAGGIO (m) 14

QUOTA DEL SONDAGGIO (m) 172.2


METODO DI PERFORAZIONE: CAROTAGGIO CONTINUO

QUOTA FALDA: 4.50

RIVESTIMENTI: NON UTILIZZATO

FLUIDO DI PERFORAZIONE: NON UTILIZZATO LITOLOGIA PREVALENTE

INCOERENTE



PROGETTO Fabbricati per civile abitazione LOCALITA' Staggia Senese

PROVA S.P.T. n° 2

Nspt

QUOTA ESECUZIONE DELLA DA m. 164.20 A m. 163.75

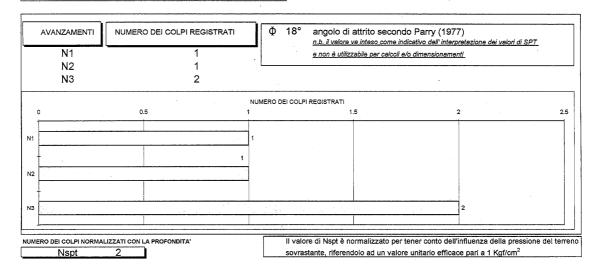
PROFONDITA 'DI ESECUZIONE DAL P.C. -8.00 Am. 8.45

PILCON-NENZI TIPO DI MAGLIO : RIFIUTO ALL'AVANZAMENTO : 0

SONDAGGIO N° 2

PROFONDITA' MASSIMA SONDAGGIO (m) 14

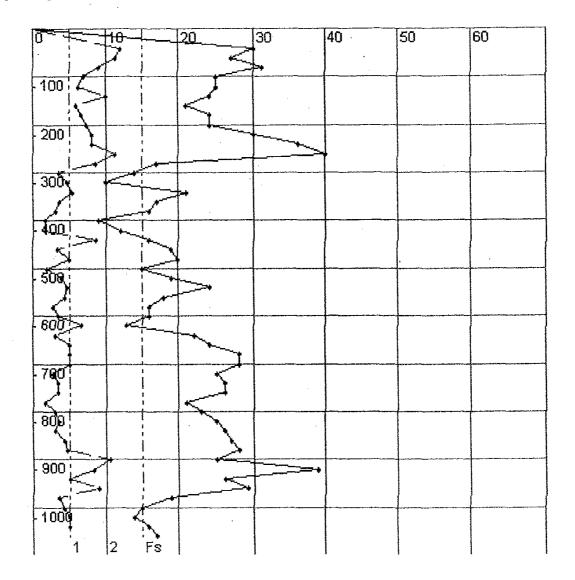
sovrastante, riferendolo ad un valore unitario efficace pari a 1 Kgf/cm2


QUOTA DEL SONDAGGIO (m) 172.2

METODO DI PERFORAZIONE: CAROTAGGIO CONTINUO

QUOTA FALDA: 4.50

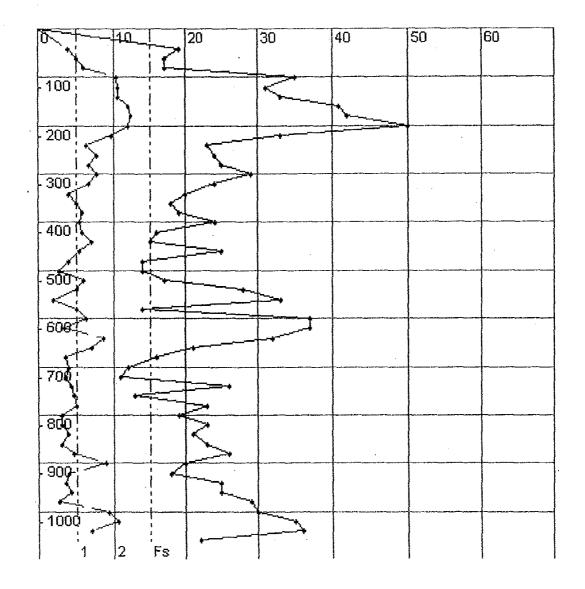
RIVESTIMENTI: NON UTILIZZATO


FLUIDO DI PERFORAZIONE: NON UTILIZZATO LITOLOGIA PREVALENTE INCOERENTE



Località : Staggia Senese Id. prova : 1 Data prova : 25/09/2002 Spinta pen.: 10

Z	Qc .	Fs	Rf	Dr	Fi	Cu	Cu n.	Mv
40	30	2,4	8	0	0	1,63		0,01111
60	27		8,4	0	0	1,54		0,01235
80	31	1,8	5,81	0	0	1,22	8,24	0,01075
100	25	1,4	5,6	0	Ō	0,95	5,15	0,01333
1.20	25	1,27	5,07	Ŏ	0	0,86	3,9	0,01333
				0	0			
140	24	2	8,33	_		1,36	5,26	0,01389
160	21	1,2		0	0	0,82	2,78	0,01587
180	24	1,33		0	0	0,91	2,75	0,01389
200	24		6,11	0	0	1	2,71	0,01389
220	30	1,6	5,33	0	0	1,09	2,69	0,01111
240	36	1,6	4,44	57,1	24,7	0	0	0,00926
260	40	2,27	5,67	0	0	1,54	3,22	0,00833
280	17	1,73	10,2	0	0	1,18	2,29	0,02941
300	14	0,73	5,24	0	0	0,5	0,91	0,03571
320	10	0,93	9,33	0	0	0,63	1,09	0,05
340	21	1,07	5,08	0	0	0,73	1,17	0,01587
360	17	0,73	4,31	42,5	24,2	0	0	0,01961
380	16	0,6	3,75	38,8	25	0	0	0,02083
400	9	0,33	3,7	27,8	24,6	0	0	0,03704
420	12	0,33	2,78	27,8	26,6	0	0	0,02778
440	16	1,73	10,83		0	1,18	1,51	0,03125
460	19	0,67	3,51	40,8	25,6	0	0	0,01754
480	20	1	5	0	0	0,68	0,8	0,01667
500	15	$\hat{0}$ , 4				0	0	0,02222
520	19	0,8		44,2	24,5	Ŏ	Ŏ	0,01754
540	24	0,93	3,89	47	25,2	ŏ	Ô	0,01389
560	18	0,87	4,81	0	0	0,59		0,02778
580	16	0,53	3,33		25,7	0	0	0,02083
600	16	0,67	4,17	40,8	24,4	0	ő	0,02083
620	13	1,33	10,26		0	0,91	0,84	0,03846
	22	0,6		38,8	27,4	0,31	0,04	0,03545
640		1	2,73				0	
660	24		4,17	48,3	24,7	0		0,01389
680	28	1	3,57	48,3	25,9	0	0	0,0119
700	28	1		48,3	25,9	0	0	0,0119
720	25	0,53	2,13	36,6	29,1	0	0	0,01333
740	26	0,67	2,56		28	0	0	0,01282
760	26	0,67			28	0	0	0,01282
780	21	0,33	1,59		30,7	0	o o	0,01587
800	23	0,6	2,61	38,8	27,7	0	0	0,01449
820	25	0,73	2,93	42,5	27	0	0	0,01333
840	26	0,6	2,31	38,8	28,7	0	0	0,01282
860	27	0,87	3,21	45,7	26,5	0	0	0,01235
880	28	0,93	3,33	47	26; 3	0	0	0,0119
900	25	2,13	8,53	0	0	1,45	0,94	0,01333
920	39	1,67	4,27	57,9	25	0	0	0,00855
940	26	1	3,85	48,3	25,3	0	0	0,01282
960	29	1,8	6,21	0	0	1,22	0,74	0,01149
980	19	0,73	3,86	42,5	25	0	0	0,01754
1000	15	0,87	5,78	0	0	0,59	0,34	0,03333
1020	14	1.	7,14	0	0	0,68	0,39	0,03571
1040	16	1	6,25	0	0	0,68	0,38	0,03125
1060	17	0	0	0	0	0	0	0

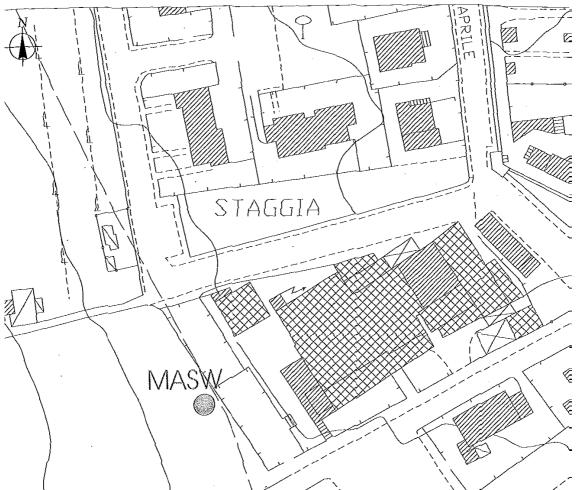

Località : Staggia Senese Id. prova : 1 Data prova : 25/09/2002 Spinta pen.: 10

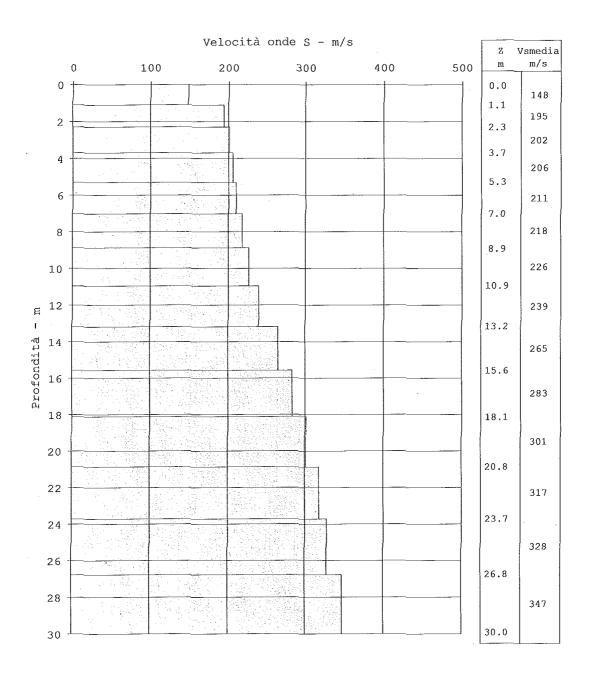


Località : Staggia Senese
Id. prova : 2
Data prova : 25/09/2002
Spinta pen.: 10

						-		
$\mathbf{Z}$	Qс	Fs	Rf	Dr	Fi	Cu	Cu n.	Mv
40	19		4,21	44,2		0		
60	17	1		0	0	0,68		
				o O	0	0,82	5,97	
80	17	1,2						
100	35	2,07	5,9	0	0	1,41		0,00952
120	31	2,13	6,88	0	0	1,45	6,8	
140	33	2,13	6,46	0.	0	1,45	5,74	
160	41	2,4	5,85	0	0	1,63	5,61	0,00813
180	42	2,47	5,87	0	0	1,68	5,1	0,00794
200	50	2,4	4,8	0	0	1,63	4,44	0,00667
220	33		5,86	0	0	1,31	3,25	0,0101 -
240	23	1,27	5,51	0	0	0,86	1,96	0,01449
260	24	1,53	6,39	0	0	1,04	2,18	0,01389
280	25	1,33	5,33	0	0	0,91	1,76	0,01333
300	29	1,53	5,29	0	0	1,04	1,89	0,01333
				0	0	0,91	1,54	0,01149
320	24	1,33	5,56					
340	20	0,8	4	_	24,8	0	0	•
360	18	1	5,56	0	0	0,68		•
380	19		5,96	0	0			0,02632
400	24	1,07	4,44	49,5	24,3			0,01389
420	16	1,13	7,08	0	0	0,77	1,02	0,03125
440	15	1,4	9,33	0	0	0,95	1,2	0,03333
460	25	1,07	4,27	49,5	24,6	0	0	0,01333
480	14	0,8		0	0	0,54	0,63	0,03571
500	14	0,53	3,81	36,6	24,8	o o		
520	17		7,06	0				
540	28	1	3,57		25,9	0		
560	33		1,21	31,2	33,2	Ö	0	
580	14	1	7,14	0	0		0,66	
	37							-
600		1,27	3,42	52,7	26,5	0	0	0,00901
620	37	0,67	1,8	40,8	30,9	0	0	0,00901
640	32	1,73	5,42	0	0			
660	21	1,4		0 .	0	0,95	0,81	
680	16	0,73	4,58	0	0	-		0,03125
700	12	0,8	6,67	0	0	0,54		0,04167
720	11	0,73	6,67	0	0		0,39	0,04545
740	26	0,87	3,33	45,7	26,2	0	0	0,01282
760	13	0,93	7,18	0	0	0,63	0,47	0,03846
780	23	1	4,35	48,3		0	0	
800	19	0,6	3,16	38,8	26,3	0	0	0,01754
820	23	0,6	2,61	38,8	27,7	0	0	0,01449
840	21	0,8	3,81	44,2	25,2	Ö	0 .	0,01587
860	23	0,6	2,61	38,8	27,7	Ö	Ö	0,01449
880	26		3,59	47	25,8	0	0	0,01443
		0,93	-					
900	20	1,8	9	0 .	0	1,22	0,78	0,01667
920	18	0,8	4,44	44,2	24,1	0	0	0.01852
940	25	0,73	2,93	42,5	27	0	0	0,01333
960	25	0,87	3,47	45,7	25,9	0	0	0,01333
980	29	0,53	1,84	36,6	30,3	0	0	0,01149
1000	30	1,87	6,22	0	0	1,27	0,73	0,01111
1020	35	2,13	6,1	0	0	1,45	0,81	0,00952
1040	36	1,4	3,89	54,6	25,6	0	0	0,00926
1060	22	0	0	0	0	0	0	0

Località : Staggia Senese Id. prova : 2 Data prova : 25/09/2002 Spinta pen.: 10





## Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.: 209 RIFERIMENTO PRATICA EDILIZIA: 10/1010 Località: VIA DELLA PACE - POGGIBONSI Progetto: AMPLIAMENTO DI FABBRICATO PER CIVILE ABITAZIONE Numero e Tipo di Indagine: 1 PROFILO SISMICO ALLEGATI: 1 PROFILO SISMICO **DATA INDAGINE:** 2011 Note: nella relazione sono presenti altre indagini di archivio già presenti in altre schede

# Ubicazione delle indagini





Vs30 = 254 m/s - Categoria C

## Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.:

210

RIFERIMENTO PRATICA EDILIZIA:

02/0279

Località:

LOC. STAGGIA - COMUNE DI POGGIBONSI

Progetto:

PIANO DI RECUPERO "STAGGIA 5"

Numero e Tipo di Indagine:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI

10 stratigrafia pozzo

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

ALLEGATI:

1 STRATIGRAFIA POZZO

**DATA INDAGINE:** 

28/10/1997

Note:

sulla corografia ubicativa la stratigrafia è identificata al n. 1, le due prove CPT identificate con lo stesso numero fanno riferimento alla pratica 03/0122

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO

SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

# O 1 POZZO

CARATTERISTICHE STRATI	GRAFICHE DELLA RICERCA
0-5	Sobbia limosa
5-6	Travertini con splle
6 - 8	Torba
8-10	My lle volones
10 - 15	Traverhuo con ayillo
15 - 19	12 ille

## **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

**SCHEDA INDAGINE N.:** 

211

RIFERIMENTO PRATICA

**EDILIZIA:** 

02/0279

LOCALITÀ:

LOC. STAGGIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

PIANO DI RECUPERO "STAGGIA 5"

**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE CPT

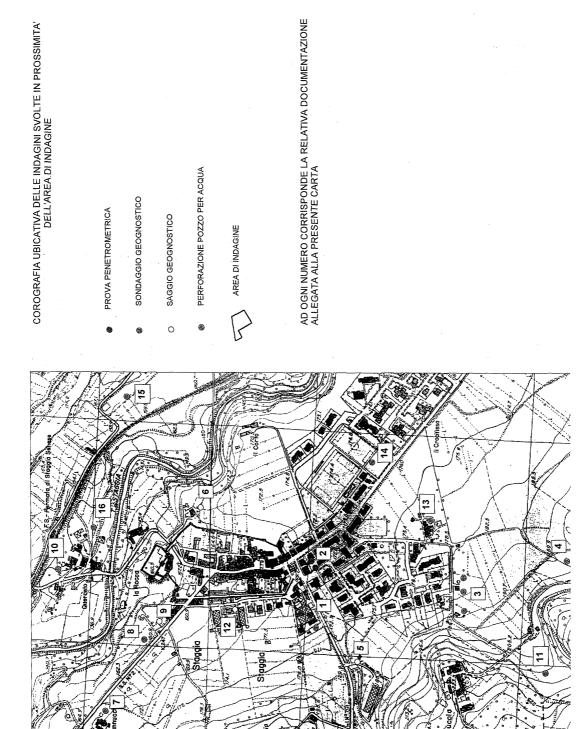
2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

**ALLEGATI:** 

2 CERTIFICAT CPT


**DATA INDAGINE:** 

28/10/1997

**NOTE:** 

sulla corografia ubicativa la stratigrafia è

identificata al n. 2

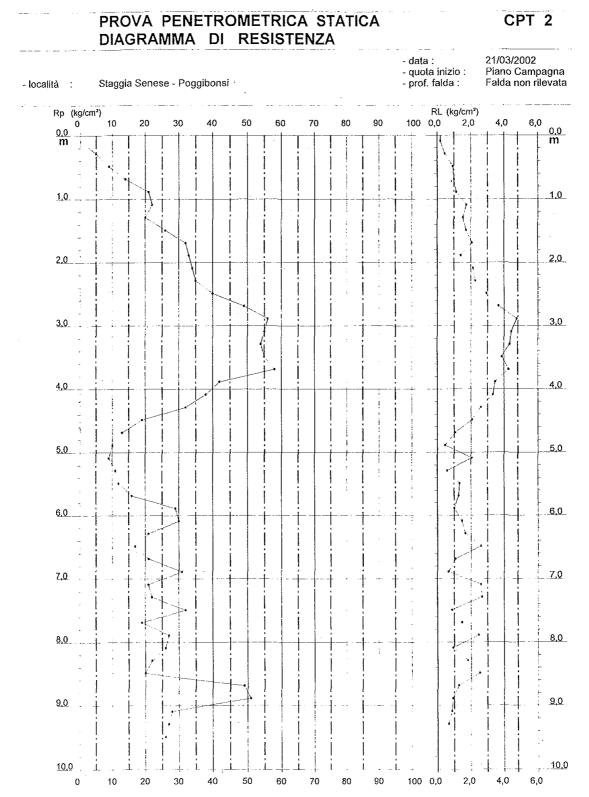


	$\boldsymbol{\cap}$
11	
V	_

										RICA SEOT						_			CF	PT	1
- località	:	8:	taggia	Sei	nese -	- Pogg	ibonsi	·	-ii:Ci		<b>N</b> 1 <b>1 1 1</b>			- pro				21/03 Piano Falda 1	Cam	- ipagr	na ala
Prof.	Rp	Rp/Ri	Natura	Υ	p'vo	[NA] Cu	OCR	CUE\$	Eu25	∐∐∐ Mo	Dr	∐∐ øis	ø2s	17A1 280	PRA 0	GRA ødm	NLI4 emy	AMAX/g	 E'50	E'25	∭ Mo
0,20 0,40 0,60 0,80 1,00 1,40 1,60 1,80 2,40 2,40 2,40 2,80 3,00 3,20 3,20 3,20 3,20	9 9 6 12 13 13 28 30 40 45 33 228 19 11 15 15	22 15 18 36 10 16 13 12 16 19 11 9 14 9 13	??? 2)    2)    4  ! 4  ! 4  ! 4  ! 4  ! 4  ! 2)    2)    2)    2)	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0,15 0,19 0,22 0,30 0,33 0,37 0,44 0,52 0,55 0,63 0,63	0,45 0,45 0,30 0,57 0,60 0,60 1,00 1,33 1,50 0,97 0,78 0,64 0,67 0,67	60,0 36,1 25,7 22,0 18,1 27,5 31,2 112,7 13,7 13,7 5,6 8,6 7,9	77 77 77 103 103 164 170 227 255 187 144 163 160 160 162	115 116 77 146 154 154 246 255 340 383 281 216 240 240 240 240 241	38 38 29 45 47 47 47 48 49 90 120 135 99 66 84 58 45 58		34 36 36 37 37 36 33 34	36 38 38 39 39 39 38 36 37	39 40 40 41 41 40 38 39	41 43 43 43 442 41 42 	35 37 36 37 38 35 33 34	26 28 29 30 31 29 28 28	0,080 	20 47 50 67 75 55 37 47		36
3,80 4,00 4,40 4,60 4,60 5,00 5,20 5,60 6,00 6,00 6,00 6,60 6,60 6,60 7,70 7,7	18 21 12 7 31 21 8 9 11 7 7 7 7 6 10 23 22 28	11 17 10 6 29 20 7 11 12 10 7 9 4 7 6 12 18 11	2)    4	1,85 1,85 1,85 1,85 1,85 1,85 1,85 1,85	0,74 0,78 0,85 0,89 0,96 1,00 1,07 1,15 1,18 1,22 1,26 1,33 1,37 1,41	0,75 0,85 0,35 0,35 1,03 0,40 0,45 0,35 0,35 0,35 0,35 0,35 0,35 0,35 0,3	6.4 6.8 6.1 6.4 2.7 5.2 2.1 5.8 4.4 4.3 3.0 6.8 6.8 1.1 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3	192 198 227 42 217 252 244 275 44 229 44 45 45 45 45 45 45 45 45 46 394 406	288 296 341 62 325 377 333 366 412 66 343 67 67 67 58 426 580 591 610	50 563 45 111 93 63 35 38 42 11 35 11 11 11 11 9 40 69 68 84	25 	31 33 31	34 	37 	40	30 - 31 29 - - - - - - - - - - - - - - - - - -	27 29 27 	0,047 	35 52 35 	53 78 53 	63 93 63 
8,00 8,20 8,40 8,60 8,80 9,00 9,20 9,40 9,60	9 8 37 24 55 25 35 7 24	17 7 33 20 46 17 75 4	2!!!! 2!!!! 3:::: 4!.!: 3:::: 4!.!: 1*** 4!.!:	1,85 1,85 1,85 1,85 1,85 1,85 1,85	1,66 1,70	0,45 0,40 0,89 0,91 0,35 0,89	3,8 1,4 1,2 3,0 2,9 0,8 2,6	264 238 436 452 46 462	396 357 654 678 68 694	84 38 35 72 75 	27 12 40 12 23	32 30 34 30 31 29	34 33 36 33 34 	37 36 38 36 37 35	40 39 41 39 40 	29 26 31 26 28 	30 28 31 28 29 	0,052 0,023 0,079 0,024 0,044 0,019	62 40 92 42 58	60 138 63	111 72 165 75 105

02

### CPT 1 PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA 21/03/2002 Piano Campagna Falda non rilevata - data : - quota inizio : - prof. falda : Staggia Senese - Poggibonsi - località : RL (kg/cm²) 100 0,0 2,0 Rp (kg/cm²) 90 4,0 6,0 20 30 40 50 60 70 80 10 0,0 **m** 0<u>,0</u> 1,0 1.0 2,0 2.0 3,0 3,0 4,0 4.0 5,0 5,0 6,0 6,0 7,0 7.0 8,0 <u>0,8</u> 9,0 9,0 10,0 10,0 100 0,0 2,0 4,0 6,0 30 40 50 60 70 80 90 10 20


02

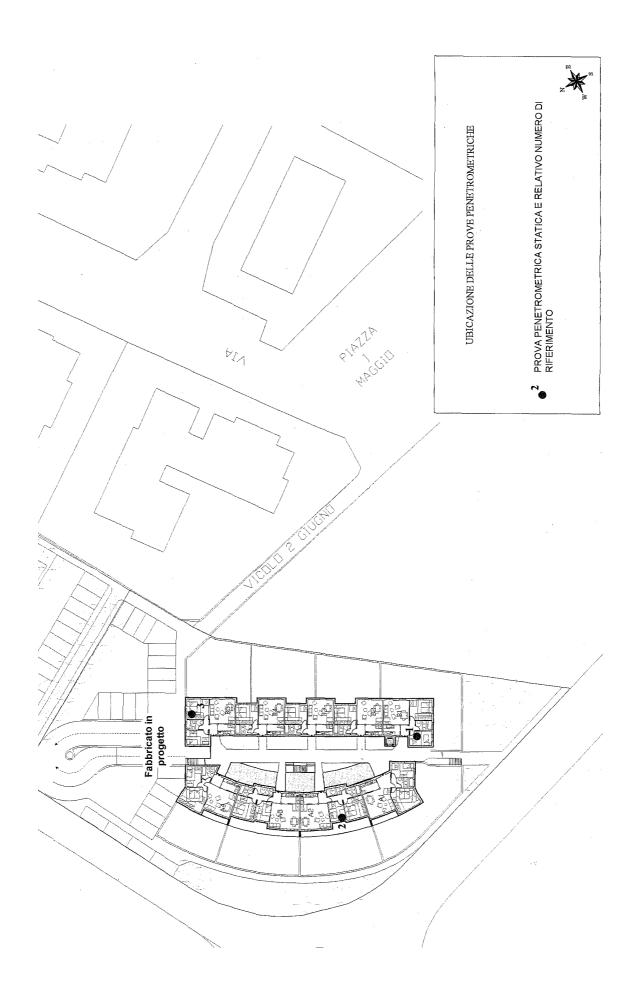
### CPT 1 PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE - data : 21/03/2002 - quota inizio : Piano Campagna Falda non rilevata Staggia Senese - Poggibonsi - prof. falda: - località : Rp/RL (Litologia Begemann 1965 A.G.I. 1977) Torbe ed Limi ed Limi sabb. Argille organiche Argille Sabbie lim. Rp - RL/Rp (Litologia Schmertmann 1978) Sabbie e Sabbie e Ghiaie 120 A A A A A S S S S S C M C C S A S M C C 1,0 1,0 New New Ne We do do 2,0 2,0 de de de 3,0 die die die 3,0 alla alla alla Ne de de । আরু আরু আর 4,0 4,0 otra otra otra 5,0 5,0 elles elles elle New New Ne NEW NEW NEW de de de 6,0 6,0 6,0 de de de ales ales ales NIC NIC NIC New New New 7,0 7,0 7,0 No de de 8,0 8,0 8.0 9,0 9,0 other steer steer 10,0 10,0

### PROVA PENETROMETRICA STATICA CPT 2 TABELLA PARAMETRI GEOTECNICI - data : 21/03/2002 - quota inizio : - prof. falda : - pagina : Piano Campagna Staggia Senese - Poggibonsi - località : Falda non rilevata E'50 E'25 Mo kg/cm² kg/cm² OCR (-) Rp Rp/Rl kg/cm² (-) ø1s (°) ø2s (*) Prof. m 0,20 0,400 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 0,500 Natura Litol. (-) -59412226233449655455552493293111 1116903172111222912762204518726 0,129 0,121 0,103 0,118 0,130 0,125 0,122 0,119 0,126 0,149 0,136 0,134 0,134 0,135 0,103 0,103 35 37 33 43 53 55 57 82 93 99 99 97 70 63 53 0.051 0.052 0.028 48 50 35 52 35 35 35 45 43 37 33 82 85 47 45 43 375 385 389 418 426 422 415 563 578 584 627 640 633 623 68 65 55 50 123 128 70 68 65

473

02




02

### PROVA PENETROMETRICA STATICA CPT 2 VALUTAZIONI LITOLOGICHE - data : 21/03/2002 - quota inizio ; Piano Campagna - località : Staggia Senese - Poggibonsi -- prof. falda: Falda non rilevata Rp/RL (Litologia Begemann 1965 A.G.I. 1977) Torbe ed Limi ed Limi sabb. Argille organiche Argille Sabbie lim. Rp - RL/Rp (Litologia Schmertmann 1978) Sabbie e Sabbie e Ghiale 120 A A A A A A A S S S S S S S 0,0,5 m Ne Ne Ne Wa Na Na alte alte alte 1,0 1,0 wa wa wa when when when 2,0 2,0 2,0 de de de 3,0 Was Was Was 3,0 dia dia dia Na Na Na Alto Alto Alto 4,0 المكادد المكادد المكادد 4,0 de de de Alex Her Her also also also aka aka aka 5,0 5,0 Was Na Na vites vites vite New New New 6,0 6,0 6,0 otes otes otes NEW NEW NEW 7,0 7,0 drade de de de de 8,0 8,0_ 8,0 alter alter alter de de de 9,0 9,0 10,0_ 10,0

# Comune di Poggibonsi

(Provincia di Siena)

Scheda Indagine n.:	212
RIFERIMENTO PRATICA EDILIZIA:	05/0338
Località:	LOC. STAGGIA SENESE - COMUNE DI POGGIBONSI
Progetto:	Costruzione di fabbricato
Numero e Tipo di Indagine:	3 PROVE PENETROMETRICHE CPT
Allegati:	3 CERTIFICATI CPT
Data Indagine:	11/10/2004
<b>N</b> оте:	



### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

21/05/2005

- lavoro : - località :

Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI)

- quota inizio : - prof. falda :

Piano Campagna Falda non rilevata

CPT 1

- pagina :

Prof. m	Letture di punta	campagna laterale	qc kg/	fs cm²	qc/fs		Prof. m	Letture d	li campagi laterale	na qc	fs kg/cm²	qc/fs
 0.20	7.0	42.0	7.0	0,47	15.0	1	5.20	19.0	37.0	19.0	0.87	22.0
0.20 0.40	9.0	13.0	7.0 9.0	0.47	19.0	1	5.40	16.0	29.0	16.0	0.80	20.0
0.60	7.0	16.0 14.0	7.0	0.47	17.0		5.60	13.0	25.0	13.0	0.67	19.0
0.80	8.0	14.0	8.0	0.40	11.0	İ	5.80	11.0	21.0	11.0	0.33	33.0
	15.0	26.0	15.0	1,80	8.0	1	6.00	13.0	18.0	13.0	0.33	39.0
1.00	24.0		24.0	2,40	10.0	1	6.20	11.0	16.0	11.0	0.33	24.0
1.20	28.0	51.0	28.0	2.20	13.0	1	6.40	11.0	18.0	11.0	0.47	24.0
1.40		64.0			18.0	1	6.60	12.0	19.0	12.0	0.60	20.0
1.60	38.0	71.0	38.0	2.13		Ì	6.80	12.0	21.0	12.0	0.60	20.0
1.80	39.0	71.0	39.0	3,40	11.0	1			23.0		0.73	19.0
2.00	40.0	91.0	40.0	3.20	12.0	-	7.00 7.20	14.0		14.0	0.73	22.0
2.20	44.0	92.0	44.0	2.13	21.0			12.0	23.0	12.0		16.0
2.40	39.0	71.0	39.0	2.07	19.0	Ţ	7.40	11.0	19.0	11.0	0.67	
2.60	39.0	70.0	39.0	1.73	22.0	1	7.60	13.0	23.0	13.0	0.60	22.0
2.80	36.0	62.0	36.0	1.53	23.0		7.80	17.0	26.0	17.0	0.80	21.0
3.00	35.0	58.0	35.0	1.40	25.0		8.00	17.0	29.0	17.0	0.80	21.0
3.20	41.0	62.0	41.0	1.40	29.0	1	8.20	11.0	23.0	11.0	0.93	12.0
3.40	36.0	57.0	36.0	2.07	17.0		8.40	6.0	20.0	6.0	0.33	18.0
3.60	34.0	65.0	34.0	1.53	22.0	-	8.60	5.0	10.0	5.0	0.47	11.0
3.80	41.0	64.0	41.0	2.07	20.0		8.80	8.0	15.0	8.0	0.27	30.0
4.00	40.0	71.0	40.0	1.80	22.0	1	9.00	10.0	14.0	10.0	0.27	37.0
4.20	42.0	69.0	42.0	2.00	21.0		9.20	9.0	13.0	9.0	0.40	22.0
4.40	34.0	64.0	34.0	1.73	20.0	1	9.40	9.0	15.0	9.0	0.53	17.0
4.60	33.0	59.0	33.0	1.47	22.0	ļ	9.60	8.0	16.0	8.0	0.20	40.0
4.80	23.0	45.0	23.0	1,13	20.0	1	9.80	9.0	12.0	9.0	0.27	34.0
5.00	19.0	36.0	19.0	1.20	16.0		10.00	10.0	14.0	10.0		

### PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

- lavoro : - località :

Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI)

- data : - quota inizio : 21/05/2005 Piano Campagna

- prof. falda :

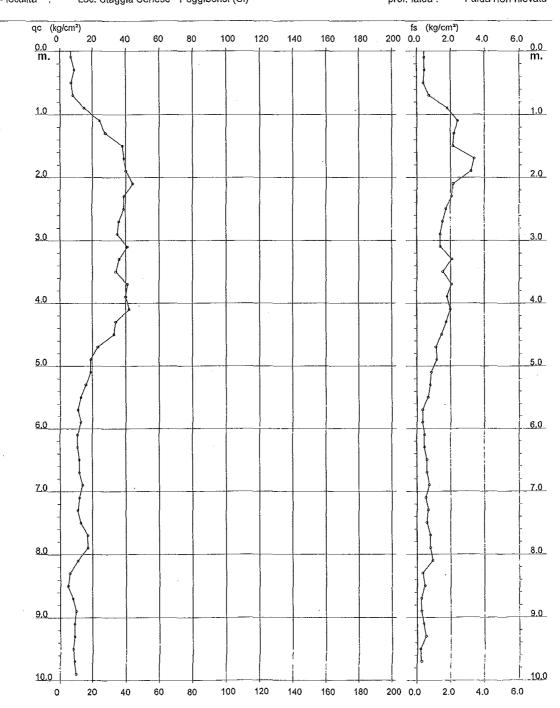
Falda non rilevata

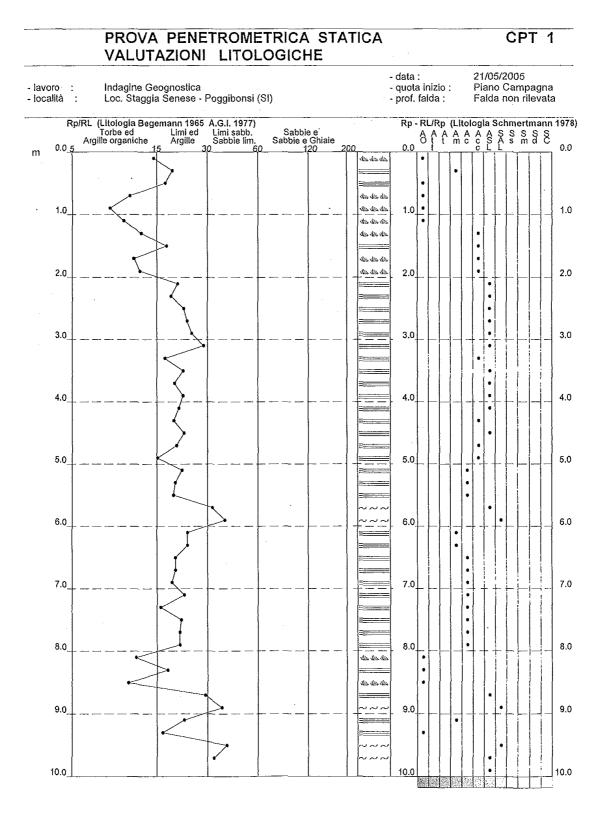
				- pagina :	1	
	NATURA	AMIBERODA		NATURA	RANULARE	
	Y' a'vo Cu OCR m² kg/cm² kg/cm² (-)	Eu50 Eu25 Mo kg/cm² kg/cm²		02s ø3s ø4s (°) (°) (°)	ødm ørny Amax/g	E'50 E'25 Mo kg/cm³ kg/cm²
m kg/cm² (-) Litol. 1 0.20 7 15 12*** 0.40 9 19 12*** 0.60 7 17 22/** 0.60 8 11 22/** 1.00 18 13 47.5 1.00 24 10 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 38 13 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.5 1.00 12 47.	Y dvo Cu Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc Cc	Eu50 Eu25 Mo   kg/cm² kg/cm² kg/cm²  114 21 111  77 115 39   68 1022 35   113 170 50   115 127 72   164 246 84   215 323 114   221 332 117   227 340 120   249 374 132   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   221 332 117   232 349 123   232 349 123   237 340 120   232 349 123   237 340 120   232 349 123   237 340 120   238 357 126   388 102   239 349 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   399 357 126   3	% (1)	o2s ø3s ø4s	ødm ømy Amax/g	
7.80 17 21 2/// 1 8.00 17 21 2/// 1 8.20 11 12 2///	.05 1.41 0.60 2.2 .85 1.44 0.72 2.6 .85 1.48 0.72 2.8 .85 1.52 0.54 1.7 .85 1.55 0.30 0.8	376 564 54 380 570 54 308 462 42 180 270 29	= =			
8.60 5 11 1*** 6.80 8 30 41:5: 9.00 10 37 41:5: 19.20 9 22 21:11 9.40 9 17 21:11	.050 0.50 0.6 .85 1.59 0.25 0.6 .85 1.63 0.40 1.1 .85 1.66 0.50 1.4 .85 1.70 0.45 1.2 .85 1.78 0.40 1.0	33 49 8 239 359 35 294 441 40 267 401 38 268 402 38 240 360 35	- 28 - 28	31 35 38 31 35 38 	25 26 25 26 25 26	13 20 24 17 25 30 13 20 24
9.80 9 34 41/:	.85 1.81 0.45 1.1 .85 1.85 0.50 1.2	269 403 38 297 445 40		31 35 38	25 26	15 23 27

## PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1

- lavoro : - località :


Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI)


- data :

21/05/2005

- quota inizio : - prof. falda :

Piano Campagna Falda non rilevata





### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

- lavoro : - località :

Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI)

- data : - quota inizio : - prof. falda :

21/05/2005 Piano Campagna Falda non rilevata

CPT 2

- pagina :

Prof.	Letture d punta	i campagna laterale	a qc kg	fs /cm²	qc/fs	Prof.	Letture d punta	i campaç lateral		fs kg/cm²	qc/fs
0.20	10.0	23.0	10.0	0.87	12.0	5.20	16.0	33.0	16.0	1.07	15.0
0.40	16.0	29.0	16.0	1.33	12.0	5.40	13.0	29.0	13.0	1.53	8.0
0.60	9.0	29.0	9.0	0.87	10.0	5.60	14.0	37.0	14.0	0.67	21.0
0.80	5.0	18.0	5.0	1.07	5.0	5.80	10.0	20.0	10.0	0.60	17.0
1.00	6.0	22.0	6.0	0.80	7.0	6.00	11.0	20.0	11,0	0.60	18.0
1.20	17.0	29.0	17.0	1,47	12.0	6.20	13.0	22.0	13.0	0.53	24.0
1.40	21.0	43.0	21.0	1,53	14.0	6.40	13.0	21.0	13.0	0.53	24.0
1.60	32.0	55.0	32.0	2,33	14.0	6.60	14.0	22.0	14.0	0.53	26.0
1.80	34.0	69.0	34.0	2.47	14.0	6.80	8.0	16.0	0.8	0.47	17.0
2.00	40.0	77.0	40.0	2,87	14.0	7.00	9.0	16.0	9.0	0.40	22.0
2.20	39.0	82.0	39.0	2,47	16.0	7.20	9.0	15.0	9.0	0.40	22.0
2.40	37.0	74.0	37.0	2,67	14.0	7.40	8.0	14.0	8.0	0.53	15.0
2.60	38.0	78.0	38.0	1.60	24.0	7.60	10.0	18.0	10.0	0.40	25.0
2.80	39.0	63.0	39.0	1,53	25.0	7.80	11.0	17.0	11.0	0.60	18.0
3.00	43.0	66.0	43.0	2.00	22.0	8.00	14.0	23.0	14,0	0.67	21.0
3.20	41.0	71.0	41.0	2.40	17.0	8.20	22.0	32.0	22.0	1.07	21.0
3.40	42.0	78.0	42.0	2.00	21.0	8.40	24.0	40.0	24.0	1.07	22.0
3.60	40.0	70.0	40.0	2,40	17.0	8.60	29.0	45.0	29.0	1.33	22.0
3.80	41.0	77.0	41.0	2.20	19.0	8.80	18.0	38.0	18.0	1.00	18.0
4.00	41.0	74.0	41.0	2.20	19.0	9.00	13.0	28.0	13.0	0.67	19.0
4.20	32.0	65.0	32.0	1.87	17.0	9.20	12.0	22.0	12.0	0.53	22.0
4.40	27.0	55.0	27.0	0.80	34.0	9.40	12.0	20.0	12.0	0.47	26.0
4.60	24.0	36.0	24.0	2.07	12.0	9.60	8.0	15.0	8.0	0.53	15.0
4.80	25.0	56.0	25.0	1.33	19.0	9,80	9.0	17.0	9.0	0.40	22.0
5.00	22.0	42.0	22.0	1.13	19.0	10.00	11.0	17.0	11.0		

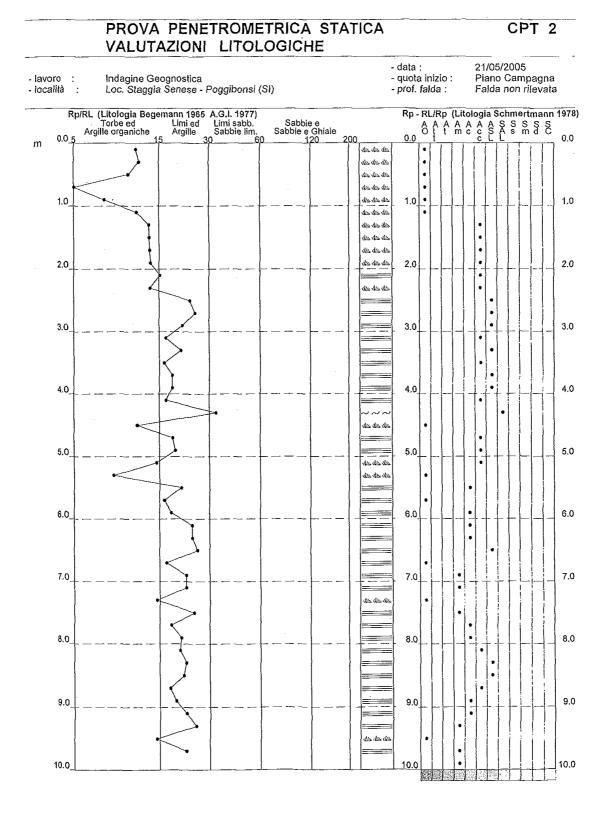
### PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 2

- lavoro : - località :

Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI)

- data : - quota inizio : 21/05/2005 Plano Сатрадла


- prof. falda :

Falda non rilevata

	kdg & 50 E'25 Mo ) kg/cm² kg/cm²
Prof. qc qc/fs Natura Y d'vo Cu OCR Eu50 Eu25 Ma Or e1s e2s e3s e4s edm etny Amax/g E'50 m kg/cm³ (-) Litol. V/m² kg/cm³ kg/cm³ (-) kg/cm³ kg/cm³ .% (') (*) (*) (*) (') (') (') (-) kg 0.20 10 12 2/// 1.85 0.04 0.50 99.9 85 128 40	kdg E:50 E'25 Mo ) kg/cm² kg/cm²
0.40 16 12 2//// 1.85 0.07 0.70 99.9 118 177 52	07 35 53 63 37 53 80 96
0.80 5 5 1*** 1.85 0.15 0.25 12.1 10 15 8	35

#### PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA 21/05/2005 - data : Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI) Piano Campagna Falda non rilevata - quota inizio : - lavoro : - località : - prof. falda : fs (kg/cm²) 200 0.0 2.0 qc (kg/cm²) 20 180 4.0 6.0 40 60 80 100 120 140 160 0.0 **m**. 0,0 **m**. 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5,0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10,0 6.0 100 120 140 180 200 0.0 160

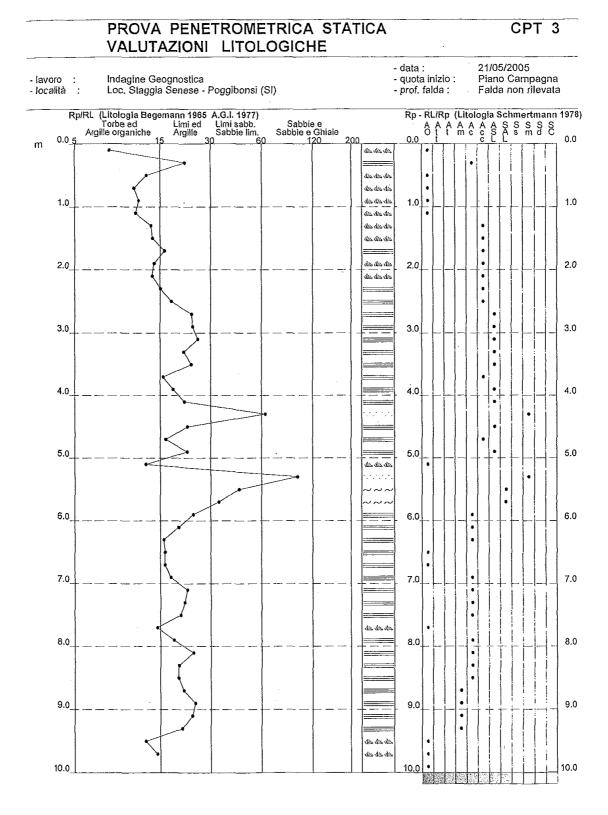
CPT 2



#### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

- lavoro : Indagine Geognostica

- località : Loc. Staggia Senese - Poggibonsi (SI)


- data : 21/05/2005
- quota inizio : Piano Campagna
- prof. falda : Falda non rilevata

CPT 3

- pagina: Prof. Letture di campagna qc fs ac/fs Prof. Letture di campagna qc fs qc/fs kg/cm² kg/cm² punta laterale punta laterale 0.20 15.0 9.0 1.13 8.0 5.20 18.0 36.0 18,0 1.40 13.0 0.40 16.0 33.0 16.0 0.73 22.0 5.40 26.0 47.0 26,0 0.27 97.0 0.60 13.0 24.0 13.0 1.00 13.0 5.60 27.0 31.0 27.0 0.60 45.0 0.80 11.0 26.0 11.0 1.00 11.0 5.80 23.0 32.0 23.0 0.67 34.0 14.0 29.0 14.0 1.20 12.0 6.00 13.0 23.0 13.0 0.53 24.0 1.00 1.20 15.0 33.0 15.0 1.33 11.0 6.20 12.0 20.0 12.0 0.60 20.0 1.40 24.0 44.0 24.0 1.73 14.0 6.40 12.0 21.0 12.0 0.73 16.0 1.60 32.0 58.0 32.0 2.27 14.0 6.60 10.0 21.0 10.0 0.60 17.0 1.80 42.0 76.0 42.0 2.53 17.0 6.80 10.0 19.0 10.0 0.60 17.0 46.0 84.0 46.0 3.20 14.0 7.00 12.0 21.0 12.0 0.67 18.0 2.00 2,20 46.0 94.0 46.0 3.27 14.0 7.20 12,0 22.0 12.0 0.53 22.0 2.40 43.0 92.0 43.0 2.73 16.0 7.40 13.0 21.0 13.0 0.60 22.0 2.60 40.0 81.0 40.0 2.20 18.0 7.60 11.0 20.0 11.0 0.53 21.0 2.80 35.0 68.0 35.0 1.47 7.80 9.0 9.0 0.60 15.0 24.0 17.0 56.0 34.0 1.40 24.0 10.0 19.0 10.0 0.53 19.0 3.00 34.0 8.00 3.20 33.0 54.0 33.0 1.27 26.0 8.20 13.0 21.0 13.0 0.53 24.0 3.40 33,0 52.0 33.0 1.53 22.0 8.40 12.0 20.0 12.0 0.60 20.0 3.60 61.0 38.0 1.60 8.60 12.0 21.0 12.0 0.60 20.0 38,0 24.0 3.80 63.0 39.0 2.40 16.0 8.80 10.0 19.0 10.0 0.47 39.0 4.00 41.0 77.0 41.0 2.20 19.0 9.00 10.0 17.0 10.0 0.40 25.0 39.0 72.0 39.0 1.80 22.0 9.20 8.0 14.0 8.0 0.33 24.0 4.20 4.40 61.0 34.0 0.53 64.0 9.40 7.0 12.0 7.0 0.33 21.0 34.0 4.60 35.0 27.0 1.20 22.0 9.60 6.0 11.0 6.0 0.47 13.0 27.0 4.80 18,0 36.0 18.0 1.07 17.0 9.80 8.0 15.0 8.0 0.53 15.0 27.0 1.20 18.0 10.0 5.00 43.0 27.0 22.0 10.00 10.0

	PRO'															CF	PΤ	3
- lavoro : - località :	Indagine Loc. Sta			Poggi	bonsi (	(SI)					- pro	ota ir			21/05/ Piano Falda 1	Cam	pagr	
Prof.   qc   m   kg/cm²   0.20   9   0.40   16   0.60   13   0.80   114   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   14   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.20   1.	Cofs   Natura   Cofs   Natura   Cofs   Natura   Cofs   C	Y m' kg/c c c c c c c c c c c c c c c c c c c	Cu / Cu / Cu / Cu / Cu / Cu / Cu / Cu /	(F) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 999.2 (8) 99	EU50 kg/g/m 7 118 119 119 119 119 119 119 119 119 119	Eu25	Mo	Dr %	a1s (')	#25 (°)	03(*)	845 ()	(A) (m (7) :: - :: - : - : - : - : - : - : - : -	emy(*)	Amawlg (-)	E'50 kg/kg/kg/7777726785575555555555555555555555555555	600 1055 1158 1000 885 883 95 883 95 883 988 1088	Mo Mon* 772 8 926 1239 1240 1240 1240 1240 1240 1240 1240 1240

#### PROVA PENETROMETRICA STATICA CPT 3 DIAGRAMMA DI RESISTENZA 21/05/2005 Piano Campagna - data : Indagine Geognostica Loc. Staggia Senese - Poggibonsi (SI) - lavoro : - località : - quota inizio: - prof. falda : Falda non rilevata fs (kg/cm²) 200 0.0 2.0 qc (kg/cm²) 20 40 100 120 140 160 180 4.0 60 80 6.0 0 0.0 **m.** 0.0 **m.** 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0 <u>6.0</u> 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0 20 100 120 160 180 200 0.0 2.0 6.0 40 60 80 140 4.0



## Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.: 213 RIFERIMENTO PRATICA EDILIZIA: 02/0279 Località: LOC. STAGGIA- COMUNE DI POGGIBONSI Progetto: PIANO DI RECUPERO "STAGGIA 5" Numero e Tipo di Indagine: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI ALLEGATI: 1 SAGGIO GEOGNOSTICO DATA INDAGINE: n.d. Note: sulla corografia ubicativa la stratigrafia è identificata al n. 5

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

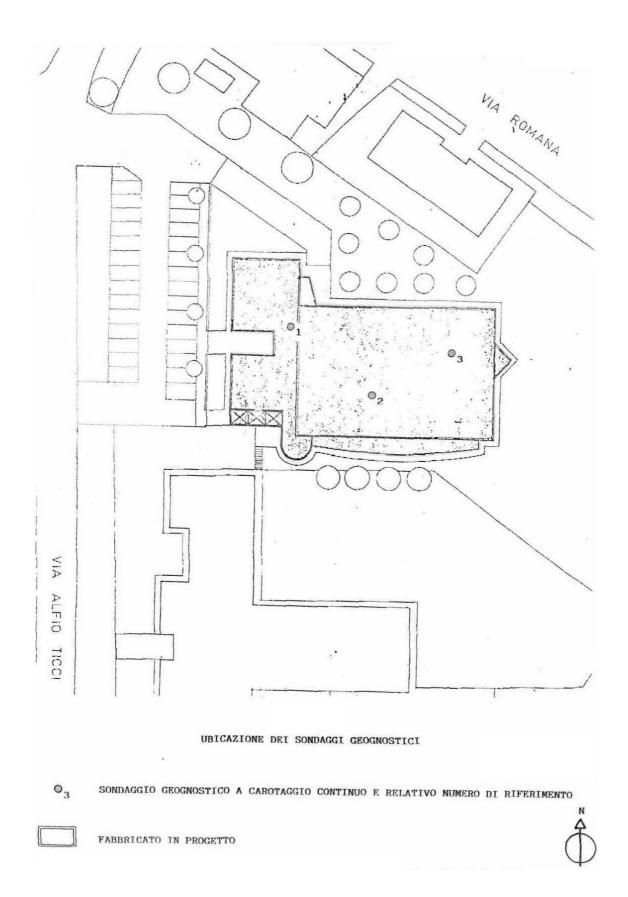
SONDAGGIO GEOGNOSTICO

SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE


AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

	0	5	) pag. 1 di 1	2222	ONDAGGIO N° : <b>1</b> DATA : 0  ONDITA' TOTALE: -3	
			LITA':Fontana - Staggia UNE: Pogibonsi		NORD: EST: QUOTA (m):180.00	
Rivestimento	QUOTA (m)	PROFONDITA' (m)	LITOLOGIA	O & CAROTAGGIO B (%)	CAMPIONI WISHING. (3) PROPERTY OF CASSETTA CASS OF CASSETTA CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CASS OF CA	Pocket penetrom. (kg/cmq)
	179-	- 0	Terreno vegetale  Sabbia limosa color ocra con concreioni calcaree travertinose		-1	

## Comune di Poggibonsi

(Provincia di Siena)

SCHEDA INDAGINE N.:	214
RIFERIMENTO PRATICA EDILIZIA:	Ufficio Lavori Pubblici
Località:	LOC. STAGGIA SENESE- COMUNE DI POGGIBONSI
Ркодетто:	Costruzione della palestra della scuola media Leonardo Da Vinci
Numero e Tipo di Indagine:	3 carotaggi continui 6 campioni per prove di laboratorio
Allegati:	3 carotaggi continui
	6 CERTIFICATI DI LABORATORIO
Data Indagine:	09/06/1999
<b>N</b> оте:	



20.00	16	GIO Nº: 1			QUOTA INIZIO: LOCALITA': S	TAGG	IA SENE	SE - POGG	IBONSI
PROFON. MT	QUOTA	STRATIG.	CAMP.	PROF. CAMP.	DESCRIZIONE LITOLOGICA	% CAROT.	S.P.T.	POKET PENETR.	FALD
	TOUD TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR	STRATIG	CAM	S ₁ C ₁ 1,50	Da mt 0,00 a mt 0,50 suolo pedologico marrone limo-sabbioso; da mt 0,50 a mt 2,00 limi argillosi di colore bruno, consistenti, provenienti dall'alterazione del travertino, contenenti inclusi carbonatici millimetrici;  da mt 2,00 a mt 7,70 sabbie grossolane colore nocciola chiaro, provenienti dall'alterazione del travertino, ben addensate; sature e scarsamente addensate da mt 4,70 a mt 7,70;  da mt 7,70 a mt 10,00 argille di colore nocciola, passanti al verde, sature, molto plastiche e poco consistenti.	90%	6-12-16 (1,85)		FALD
17									

BONSI	SE - POGGI	A SENE	AGGI	OTA INIZIO: LOCALITA': ST				GIO Nº: 2	IGO	SONDA
FALI	POKET PENETR.	S.P.T.	% CAROT.	DESCRIZIONE LITOLOGICA	P.	PROF. CAMP	CAMP.	STRATIG.	QUOTA	PROFON. MT
		5-4-5 (2,80)		nt 0,00 a mt 0,50 suolo pedologico so di colore marrone; t 0,50 a mt 1,90 limi argillosi di colore o, consistenti, provenienti dall'alterazio- el travertino, contenenti abbondanti si carbonatici millimetrici;	lir di b n in		•			2 3
=			90%	t 1,90 a mt 7,00 sabbie grossolane e nocciola chiaro, provenienti dall'altera- e del travertino, ben addensate; da mt a mt 7,00 le sabbie grossolane sono e e scarsamente addensate;	Ci Zi	4,30	V			5
		2-3-4 (8,00)		nt 7,00 a mt 8,90 argille di colore noccio- ature, plastiche scarsamente consistenti;						8
				t 8,90 a mt 10,50 argille grigie conte- frammenti di fossili, scarsamente istenti e plastiche;	n			_6		9
				t 10,50 a mt 11,50 sabbie grossolane e, sature e scarsamente addensate.						11
										12
										14
										15
										16
										17
										18
										19
										20

SONDA	4G	GIO Nº: 3			QUOTA INIZIO: LOCALITA': S'	TAGG	IA SENE	SE - POGG	IBONSI
PROFON. MT	QUOTA	STRATIG.	CAMP.	PROF. CAMP.	DESCRIZIONE LITOLOGICA	% CAROT.	S.P.T.	POKET PENETR.	FALD
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19				4,40	Da mt 0,00 a mt 0,40 suolo pedologico marrone limo-sabbioso; da mt 0,40 a mt 1,20 limi argillosi di colore bruno, consistenti, provenienti dall'alterazione del travertino, contenenti inclusi carbonatici millimetrici;  da mt 1,20 a mt 7,00 sabbie grossolane colore nocciola chiaro, provenienti dall'alterazione del travertino, ben addensate; da mt 4,80 a mt 7,00 le sabbie grossolane sono sature e scarsamente addensate;  da mt 7,00 a mt 9,80 argille di colore nocciola, sature, e molto plastiche;  da mt 9,80 a mt 10,00 sabbie grossolane grigie, sature e scarsamente addensate.	90%	10-11-6 (2,30) 5-4-5 (4,40)		

# Registrazione Dati

non rilevato

non rilevato

Pocket Penetrometer: Pocket Vane Test. Palestra Scuola Medía Fraz. Staggia Senese, Poggibonsí (SI) Data esecuzione: 66/90/60 Data сонѕедиа: Conficre:

Provino per: Edometria Provino per: E.L.L. < ==

Prove richieste:

Compressione semplice (espansione laterale libera) (con N.1 determinazione dei cedimenti nel tempo) Compressione edometrica II, fino a 16 Kg/cmq

Limo argilloso destrutturato marrone scuro (Rif. Munsell 7.5YR3/3 - Dark Brown)

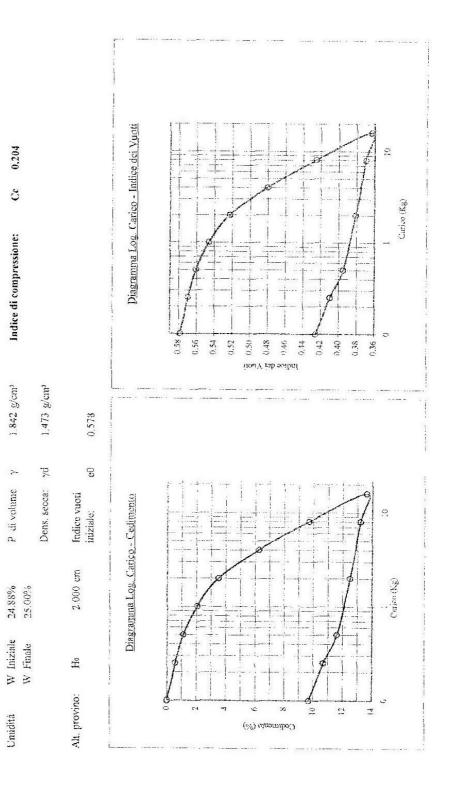
Descrizione sommaria non impegnativa:

Indisturbato

Shelby

1.50-1.85

Sondaggio;

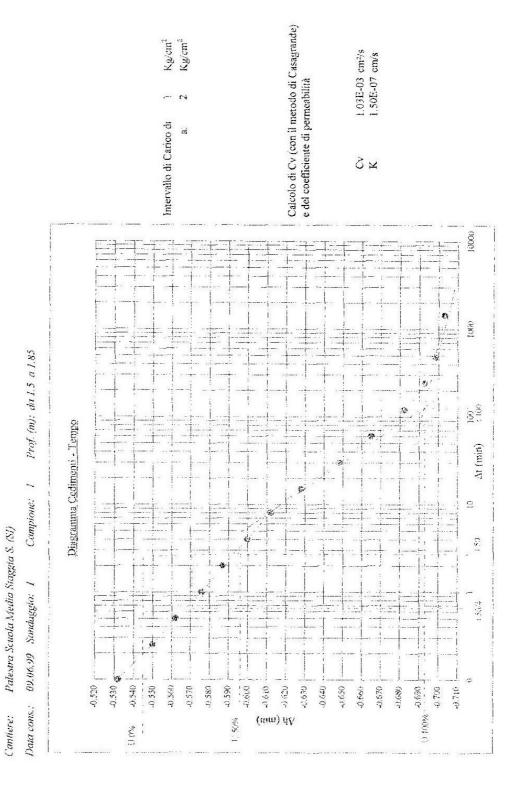

Prof. (m):

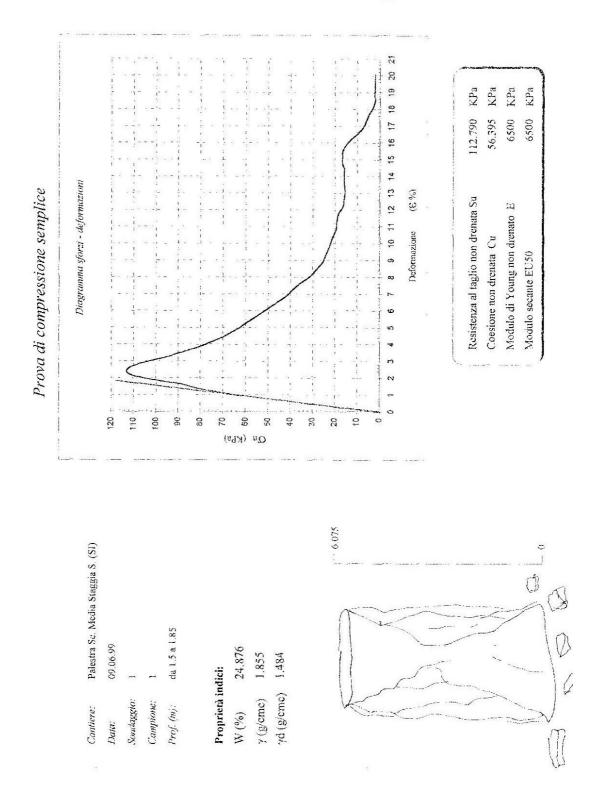
Modelità di campionatura: Qualità del campione:

Campione:

con abbondanti concrezioni carbonatiche in granuli e frammenti, resti di radici

Alto





Prof. (m): du 1.5 a 1.85

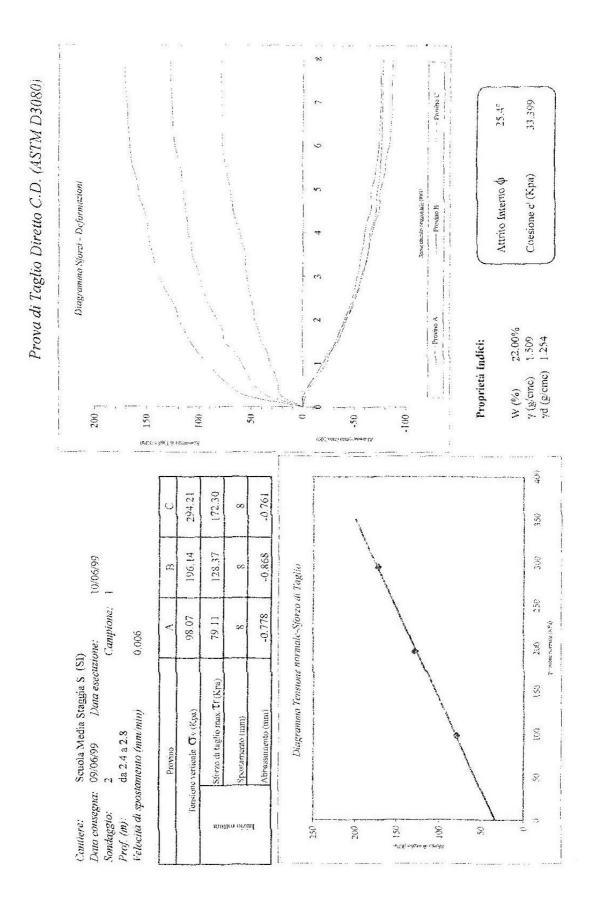
Cantiere: Palestra Scnola Media Suggia S. (St)

Data cons.: 09,06.99 Sondeggio: 1 Campione: 1 Prof. (m): da 1.5 d

MEd av (Kg/cm²) (cn²/Kg)	0.0363	0.6341	0.0298	0.0230	0.0215	0.0137	0.0077	0.0008	0.0018	0.0095	0.0568	0.1052
MEd (Kg/cm²)	43.478	46.296	52,910	68.729	73.394	115.607	205.128					
nn (cm²/Kg)	0.0230	0.0216	0.0189	0.0146	0.0136	0.0087	0.0049	0.0005	0.0012	0.0060	0.0360	0.0067
ဖ 🕣	0.5693	0.5608	0.5459	0.5229	0.4799	0.4253	0.3638	1075.0	0.3811	0.3953	0.4095	0.4253
AH/I/o (%)	0.5750	1,1150	2.0600	3.5150	6.2400	9.7000	13,6000	13.2000	12.5000	11,6000	10,7000	9,7000
Δн (cm)	0.0115	0.0223	0.0412	0.0703	0.1248	0.1940	0.2720	0.2640	0.2500	0.2320	0.2140	0.1940
σ _v (Kg / cm²)	0.25	0.50	1.00	2.00	4.00	8.00	16.00	8.00	2.00	0.50	0.25	00.0
(Kg/	0.00	0.25	0.50	1.00	2.00	4.00	8.00	16,00	8.00	2.00	0.50	0.25
Diagramma Log, Carico., Log. Modulo Edometrico											Carpo (Kg) 10	
	0001	أحساست	ـــــــــــــــــــــــــــــــــــــ	3 11.17777		ili_i 	ــــــــــــــــــــــــــــــــــــــ		نييونا ليميع	- Jane	ລ ຊາວ ⊃	

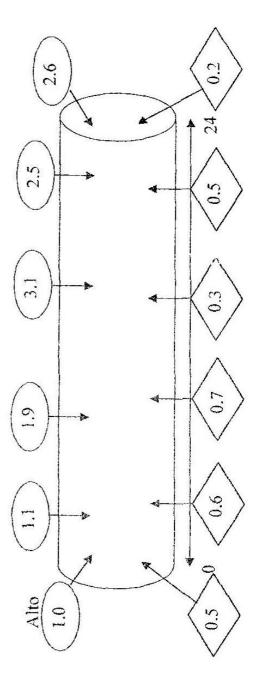





Registrazione Daii

Provino per: Taglio CD
Provino per: Taglio CD
Provino per: Taglio CD non rilevato non rilevato Pocket Penetrometer: Pocket Vane Test: Prove richieste: A B O Scuola Media Fraz. Staggia Senese, Poggibonsi (SI) Data esecuzione: Shelby Indisturbato Campione: Descrizione sommaria non impegnativa: 66/90/60 2.4-2.8 Modalità di campionatura. Qualità del campione: Data consegna: Sondaggio: Prof. (m): Cantiere:

Taglio diretto, Consolidato Drenato


Sabbia limosa carbonatica marrone chiaro (Rif. Munsell 2.5Y6/4, Light Yellowish Brown)

con concrezioni e tubuli travertinosi.

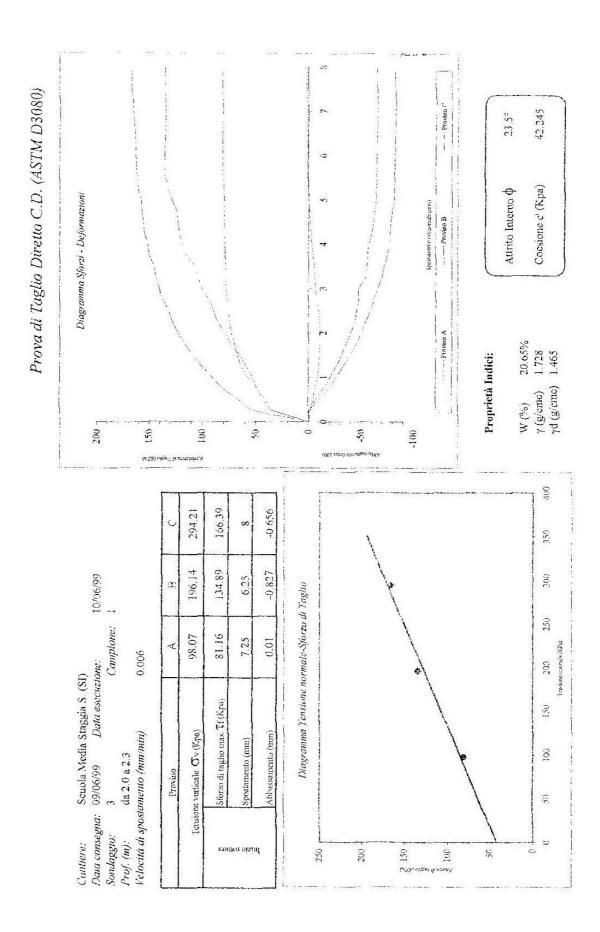


			Pocket Penetrometer:	
Cantiere:	Palestra Scuola	Palestra Scuola Media Fraz. Staggia Senese, Poggibonsi (S1)	Pocket Vane Test:	
Data consegna:		09/06/99 Data esecuzione; 10/06/99	>	
Sondaygio:	2	Campione: 2		
Prof. (m):	4.30-4.55			
Modalità di campionaura:	ухонатига:	Spezzone di Carotaggio	Prove richieste:	
Qualità del campione:	pione:	Semidisturbato	Determinazione di alcune proprietà indici	
			Umidità naturale W(%)	26.33
			Peso di Volume y (g/cmc)	1.817
Descrizione som	Descrizione sommaria non impegrativa:	ediva:	Peso di Volume secco yd (g/cmc)	1.497

Limo sabbioso carbonatico marrone chiaro (Rif. Munsell 2.5 Y5/4 - Light Olive Brown) con concrezioni e tubuli travertinosi



Provino per: Taglio CD Provino per: Taglio CD Provino per: Taglio CD non rilevato non rilevato Pocket Penetrometer: Pocket Vane Test: 4 m O Scuola Modia Fraz. Staggia Senese, Poggibonsi (S1) Data esecuzione: Shelby Indisturbato Campione: 66/90/60 2.0-2.3 Modulità di campionatura: Qualità del campione:


Data consegna: Sondaggio: Prof. (m):

Cantiere:

Limo e sabbia carbonatica marrone chiaro (Rif. Munsell 2.5Y5/6, Light Yellowish Brown) Descrizione sommaria non impegnativa: con concrezioni e tubuli travertinosi.

Taglio diretto, Consoliduto Drenato

Prove richieste:



## Registrazione Dati

non rilevato

Pocker Penetrometer:

non rilevato

Pocket Vane Test:

Taglio CD Taglio CD Taglio CD

Provino per:

Provino per: Provino per:

CBA

Cantiere: Scuola Media Fraz. Staggia Senese, Poggibonsi (SI)

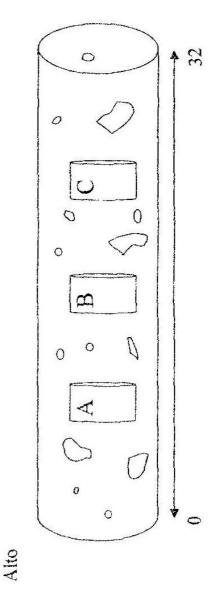
Data consegna: 09/06/99 Data esecuzione: 10/06/99

Sondaggio: 3 Campione: 2

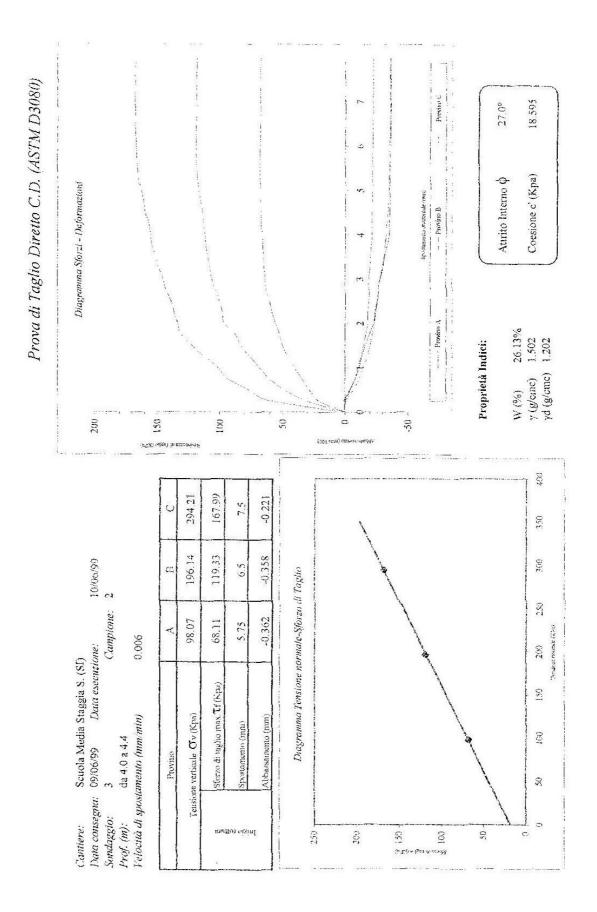
Prof. (m): 4.0-4.40

Modalità di campionatura: Shelby

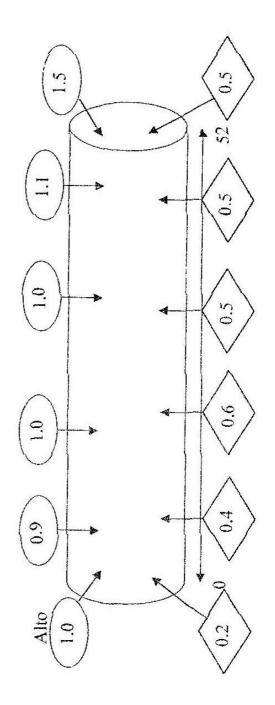
Indisturbato


Qualità del campione;

Prove richieste: Taglio diretto, Consolidato Drenato


con abbondanti inclusi traverninosi anche superiori a 2 cm.

Sabbia carbonatica marrone chiaro (Rif. Munsell 10YR6/4, Light Yellowish Brown)


Въястігіоне манната пон пиреднапуа:



SONDAGGI E DATI DI BASE



			( Tocket remember:	
Camiere:	Palestra Scuola Me	Palestra Scuola Media Fraz. Staggia Senese, Poggibonsi (SI)	Pocket Vane Test:	
Data consegna:	7 66/90/60	09/06/99 Data esecuzione: 10/06/99	>	
Sondaggio: 3	3.75	Campiona: 3		
Prof. (m):	7.60-8.00			
Modaliia di campie		Spezzone di Carotaggio	Prove richieste:	
Qualità del campione;		Semidisturbato	Determinazione di alcune proprietà indici	
			Umidità naturale W(%)	24.69
			Peso di Volume y (g/eme)	1.982
Descrizione somme	Descrizione sommaria non impegnativa:	:n:	Peso di Volume secco 7d (g/cmc)	1.576



con rare concrezioni carbonatiche, puntinature nerastre e tracce di ossidazione

Argilla marrone chiaro (Rif. Munsell 2.5Y5/6 - Light Office Brown)

## **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

**SCHEDA INDAGINE N.:** 215 RIFERIMENTO PRATICA **EDILIZIA:** 02/0279 LOCALITÀ: LOC. STAGGIA - COMUNE DI POGGIBONSI PROGETTO: PIANO DI RECUPERO "STAGGIA 5" **N**UMERO E TIPO DI INDAGINE: 4 PROVE PENETROMETRICHE CPT 2 CAROTAGGI CONTINUI **10** STRATIGRAFIA POZZO 3 CAMPIONI PER PROVE DI LABORATORIO 4 SAGGI GEOGNOSTICI **ALLEGATI:** 1 STRATIGRAFIA POZZO

**NOTE:** 

n.d.

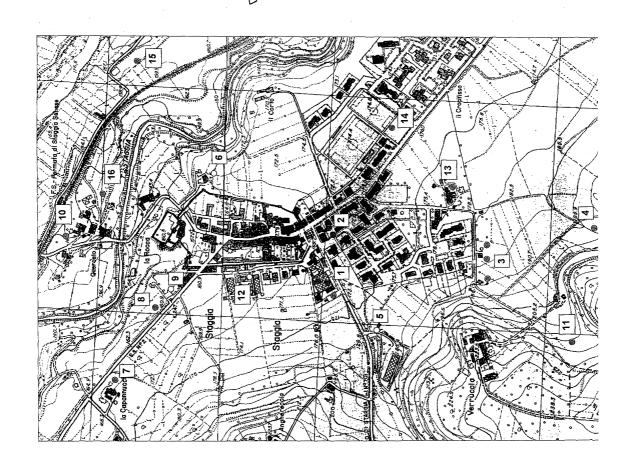
**DATA INDAGINE:** 

sulla corografia ubicativa la stratigrafia è identificata al n. 14

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA



energy of the months of the second contractions.	
δ δ Profond): " dal P.C. δ	ò Descrizione istologica ò
0 - 3	OSABBIA LIHOSA COLOR OCRA OCON INTERCALATIONI TRAVERTINOSE
3 - 12	ARGILLA SABBIOSA GRIGIA
12 - 13	SABBIA BROILLOSA (FALDA)
13 - 15	ARGILLA
15 - 16	O SABBIA GRIGIA (FALDA)
1620	à Arbilla.

## **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

**SCHEDA INDAGINE N.:** 

216

RIFERIMENTO PRATICA

**EDILIZIA:** 

02/0279

LOCALITÀ:

LOC. STAGGIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

PIANO DI RECUPERO "STAGGIA 5"

**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

**ALLEGATI:** 

1 STRATIGRAFIA POZZO

**DATA INDAGINE:** 

15/09/99

**NOTE:** 

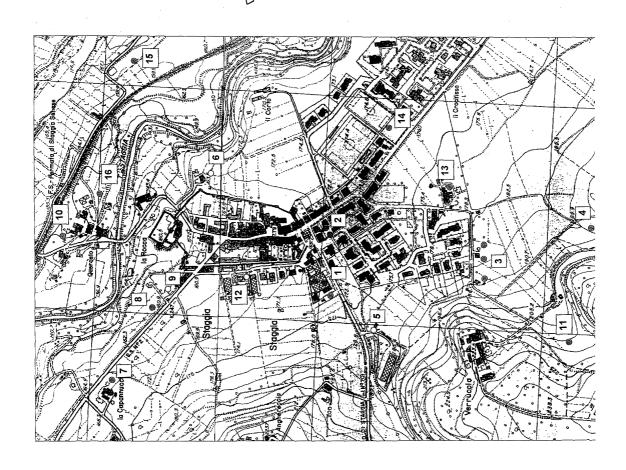
sulla corografia ubicativa la stratigrafia è

identificata al n. 13

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

PERFORAZIONE POZZO PER ACQUA

O SAGO

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA



# 13

CARATTERISTICHE STRATI	IGRAFICHE DELLA RICERCA
0 - 8	Limo
8 - 9	Sobbre ayillose
9 - 11	Sabbia limosa
11,-13,50	Sabhia Thaverhinosa
- 13,50 - 20	Sabbia augillosa.

## **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:

217

RIFERIMENTO PRATICA

**EDILIZIA:** 

10/0298

LOCALITÀ:

VIA MONTE MORELLO - POGGIBONSI

**PROGETTO:** 

SOPRAELEVAZIONE DI FABBRICATO PER CIVILE

**ABITAZIONE** 

**N**UMERO E TIPO DI INDAGINE:

3 CAROTAGGI CONTINUI

4 CAMPIONI PER PROVE DI LABORATORIO

7 PROVE PENETROMETRICHE CPT

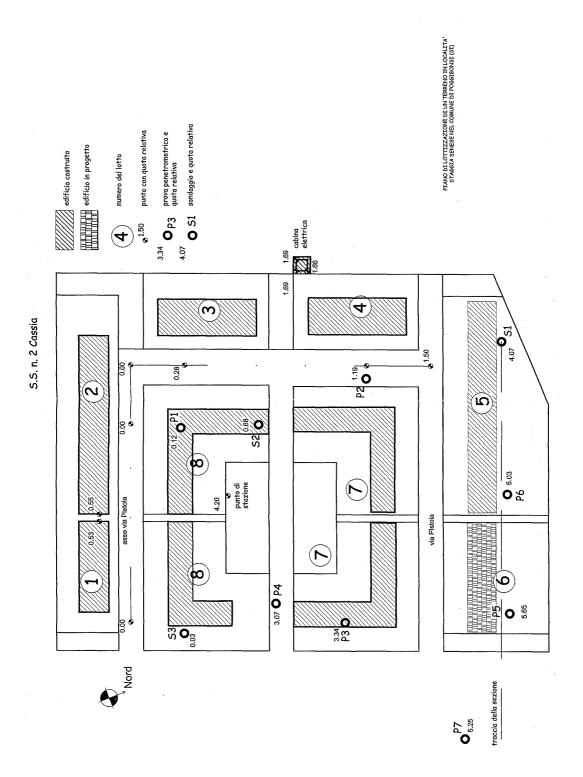
**ALLEGATI:** 

3 CAROTAGGI CONTINUI

2 CERTIFICATI DI LABORATORIO

4 CERTIFICATI PROVA CPT

**DATA INDAGINE:** 


22/02/1999

NOTE:

sulla relazione mancano alcuni certificati

di laboratorio e delle prove

penetrometriche



	DATA ELABORAZIONE: 03/03/1999	DATA INIZIO PERFORAZIONE:	22/02/1999	DATA FINE PERFORAZIONE: 22/02/1999
		CANTE	RE: Slaggia Sene	se
PERFORAZIONE: SI	QUOTA BOCCAFORO (m s.lm.):	LUNGHEZZA (m): 12.0	D INCLINAZION	NE (gradi): 0.00
MACCHINA PERFORATRICE	: Puntel lipo PX750			
SPT=Standard Po	ro in pvc, fenestrato secondo lo schem enetration Test. PI=Penetrometro Tasi metri 12.00 piezometro a tubo sfenestr	cabile, VT=Vane Test, ST=	Scissometro Tas	cabile.

			STRATIGRAFIA	CAN	PiC	NI	PERCENTUALI	• SPT	▲ NT			. [	بي	
Profonditá dal p.c. (m)	Potenza (m)	· Simbolo grafico	Descrizione litologica	Protondità di prelievo (m)	Campionatore	lipo di pretevo	DI CAROTAGGIO 50 ×	(m) N. cobi O PI (m)	O SI	DIAMETRO DEL FORO (mm)	METODO DI DEDE ODA ZIONE	METODO DI	STABLIZZAZIONE	PIEZOMETRO
			Limo con sabbia e sabbioso debolm. argilloso, nocciolo, mediamente addensato.				ansaslassan	O 0.50 2.00					<u></u>	
1,90	1.40 9.50		Limo orgilloso debolm. sabbiosa, nocciola, molto compotto. Limo sabbioso e con sabbia, nocciola, poco					2.70						0000000
2.90	1.00 0.30		oddensata, can passaggi centim. di sabbia con limo.  Sabbia fine con limo, nocciola, poco addensata.					0 2.50 1.30	O 2.50 0.54					000000
			Limo con argilla, marrone, molto compatto.	14.50	offil	بو		O 3.90 4.10	o 390 2.00	)				0000000
4.70	1.50		Argillo con limo, morrone passante nacciolo con striat, grigie, da compatto a molto compatto.		Pareli soll	Pression	in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	O 5.30	O 5.30	<u>)</u>				10000000000000000000000000000000000000
. 6.80	2.19		Limo con argilla debolm, sobbioso, avana con striot, grigie, compatto.					2.60	O 6.39 1.35 O 7.20 0.84					
28 S	1,10		Argilla con limo, marrone passante grigio-marrone, compatta.						O 8.10					000000
5.59	9,69		Argillo con limo debolm. sobbioso, necciolo con striot. grigie possante grigia, da mediamente a poco compatto.					◆ 8.50 04-04-06 ○ 9.40 0.60			nanchana.			000000
9,80 10,40 9,70	0.50 0.50		Limo can argilla sabbioso, grigia, poco compatto, con frammenti conchiliari, Dmax 1 cm. Frammenti conchiliari, Dmax 3 cm, in abbandante	-				0.60 0.60		)		Tubi di	rivestimento	0000000
230	7.30		matrice costituita do sabbia medio-fine limosa e lima arqillosa (frammenti 60%), poce addensati. Arqillo con limo, grigia, poco compattà. Arqillo con limo debolm. sabbiasa e sabbiasa. grigio-verdostra con striat. nacciala, da mediamente	- - - - -				1,50	O 11.20	); }	Roluzione con caroliere sem- plice a secco			00000000000000000000000000000000000000
			compatta a compatta.	-			<b>!</b>	06-09-06	0.96					

		DATA ELABORAZIONE: 03/03/1999	DATA INIZIO PERFORAZI			999 ia Senese	DATA FINE	PERFOR	AZIONE	: 23/0	2/19	9
PERFOR	RAZIONE: S2	QUOTA BOCCAFORO (m s.i.m.):	LUNGHEZZA (m):	12.60		LINAZIONE	(gradi): C	.00				
		E: Puntel tipo PX750		***************************************								
NOTE:	SPT=Standard P	enetration Test. PT=Penetrometro Tosco	abile. VT≕Vone Test.	ST=Scis	some	etro Tascat	sile.					
$\overline{a}$		STRATIGRAI	- I A	CAM	PIONI	PERCENTUA	ध्र • फा	<ul><li>vī</li></ul>	_		ш	L ₂
$[\mathcal{E}]$	.Simbolo	Descrizione litolo	ogica	ndità di vo (m)	ionalore prelievo	1	(m)	o sī	JAMETRO FORO (mm)	METODO DI	PERF ORAZIONE	METODO DI
dul p.c.	grafico	363611210110 111011	. •	Profandità prelievo (r	2 E	50 ×	(m)	Kg/cmq	덤		82	Ę
dul p.c. (m	grafico	Argilla con limo, marrone, molto com		Proto	Camp Si	1	(m)		ੂ ਜ਼ੁਰੂ		82	<u> </u>

	DATA ELABORAZIONE: 03/03/1999	DATA WIZIO PERFORAZIONE: 22/02/1999	DATA FINE PERFORAZION	E: 23/02/1999
		CANTERE: Staggio S	Senese	
PERFORAZIONE: S3	QUOTA BOCCAFORO (m s.l.m.):	LUNGHEZZA (m): 12.00 INCLINA	ZIONE (gradi): 0.00	
MACCHINA PERFORATR	ICE: Puntel tipo PX750			
			··	
			_	
	netro in pvc, fenestrato secondo lo schem			
SPT=Standard		scabile. VT=Vane Test. ST=Scissometro	Toscobile.	

	STRATIGRAFIA	CAMP	101	₹I F	ERCENTUALE	• SPT	• VT		·			
Protondition dal p.c. (m) Potenza (m) Suggest (m) August (m) Suggest Descrizione litalogica	Profondità di prelievo (m)		o di prelievo	OI CAROTAGGIO 50 ×	(m) N. copi O PI (m)		DIAMETRO DEL FORD (mm	MCT000 DI	PERF ORAZIONE	METODO DI STABLIZZAZIONE	PIEZOMETRO	
0.30 0.30	Limo sobbioso argilloso, rossastro, con frammenti conchiliari, Dmax 3 cm.  Argilla con limo, marrone e nacciola, compatta.  Limo con ghiaia sobbioso argilloso, nacciola, marrone ed avona, poco addensato, con clasti preval. calcarei e resti conchiliari, Dmax 2 cm, a tratti preval. (clasti 20-70x)					O 0.80 2.60	<u>0.86</u>					
250 150	Argilla con lima marrone, compatta. Limo con sabbia è ghiaia, avana è nacciala, paca addensata, con clasti calcarei, Dmax 2 cm (clasti 30-60%). Limo con argilla, marrone con striat, grigie, compatto.	3.40	Parell Solin	Pressione		3.00 2.00 0 4.30	0.96					
550 080	Limo con ghiaia sabbioso orgilloso, marrone e avana, poco addensata, con clasti colcarei, Dmax 3 cm (clasti 30-50x).  Sabbia medio-fine con limo, marrone, poco addensata, con abbond. resti conchiliari Dmox 7 cm.  Limo con argilla, debolm. sobbioso, con livelé di torba				Automotive	● 6.00 03-03-06						
327 199	nella parte bassa, marrone-grigio, mediamente compatto.  Chiaia medio-fine, poco addensata, con clasti					0.80 0.80 0.80	0.40 0.40 0.40					
960 9.60 = - 9 9.00 0.60 = - 0 9.00 0.60 = -	eteragenei, Dmax 3 cm, in abbondante matrice sabbiosa-limosa grigia-marrene (clasti 60-70%). Limo con sabbia grigia-marrene, mediamente addensato. Sabbio medio-line con limo debolm, argillosa, grigia, mediamente addensato. Sabbia grossa con gnicia fine limosa, grigia, mediamente addensata, con abbond, resti conchiliori,					<u>♥ 9.00</u> 11-12-12	-				lubi di rivestimento	10000000000000000000000000000000000000
(6) 0.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Omax 1 cm. Limo sobbioso, grigio-marrone, poco addensato, con possoggi centim. di sobbia con limo. Presenti rari tresti torbosi. Sobbia grossa con gnicio fine, limosa, grigio. Presenti trari resti torbosi. Limo sobbioso debolm. argilloso, grigio-marrone, poco addensato, con livelii centim. di sobbia con limo.					0 1120 0.20		<u>191</u>	Ratarione con coroliere sem- pice a secco	ſ		
			-	-			_1					

#### Località: STAGGIA

SONDAGGIO	CAMPIONE	PROFONDITA'	W	LL	LP	ΙР	CLASSIFICAZIONE CASAGRANDE	DENSITA' APPARENTE	DENSITA' REALE	ANGOLO DI ATTRITO	COESIONE	EDOMETRIA	NOTE
N°	N°	m	%	%	%	%		g/cm ³		1	Kg/cm ²		
1	1	4.50/5.00	35.4	<b>7</b> 9	33	46	СН	1.81	2.76	16° ^T	0.29	Х	T = Prova triassiale tipo CIU: tensioni totali
										26°E			E = Prova triassiale tipo CIU: tensioni efficaci
2	I	5.00/5.20	43.4	39	25	14	CL	1.72		34°CD	0.01		CD = Taglio diretto consolidato lento drenato
2 .	2	7.50/8.00	49.4	44	23	21	CL	1.70					
3	1	3.40/3.90	47.2	47	25	22	CL	1.70	2.73	36°CD	0.01	X.	CD = Taglio diretto consolidato lento drenato

### PROVA EDOMETRICA (IL) (foglio 1)

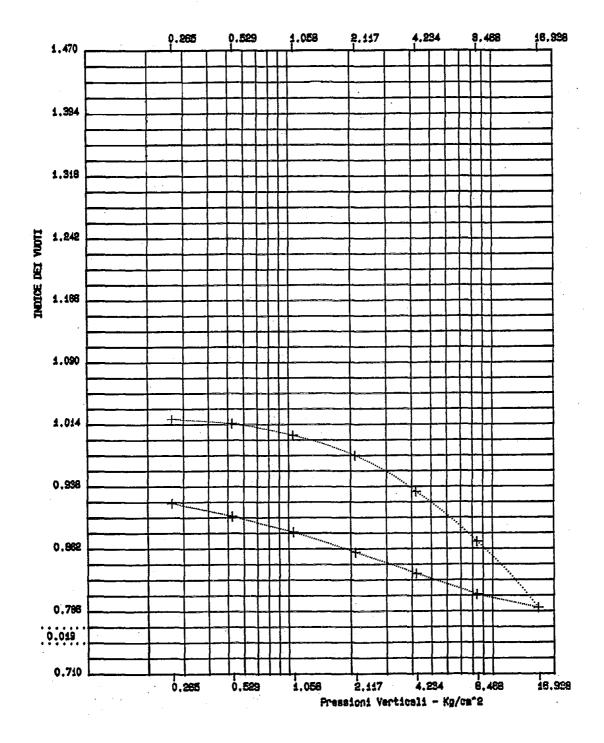
Localita': STAGGIA

Sond:1 Camp: 1 Prof: 4.50/5.00 h iniz.= 2.55 cm; h fin.= 1.259 cm; Sezione = 31.17 cm^2 Indice dei vuoti iniziale = 1.025

Pres. Vert. (Kg/cm²) -	Delta h (cm) -	Indice dei Vuoti
CICLO DI CARICO		
0.265	0.006	1.021
0.529	0.013	1.015
1.058	0.031	1.001
2.117	0.062	0.976
4.234	0.118	0.932
8.468	0.195	0.871
16.938	0.296	0.790
CICLO DI SCARICO		
8.468	0.276	0.806
4.234	0.244	0.832
2,117	0.211	0.858
1.058	0.180	0.882
0.529	0.156	0.902
0.265	0.136	0.918
		•

Densit reale= 2.76 g/cm^3; Dens.app.= 1.81 g/cm^3 Umidit iniz.= 35.4 % Umidit fin.= 34.7 % Osservazioni:

Materiale a notevole predisposizione al rigonfiamento


Data:12/03/99

PROVA EDOMETRICA (foglio 2)

Sond .: 1

Camp .: 1

Prof. (m): 4.50/5.00



PROVA EDOMETRICA (foglio 3)

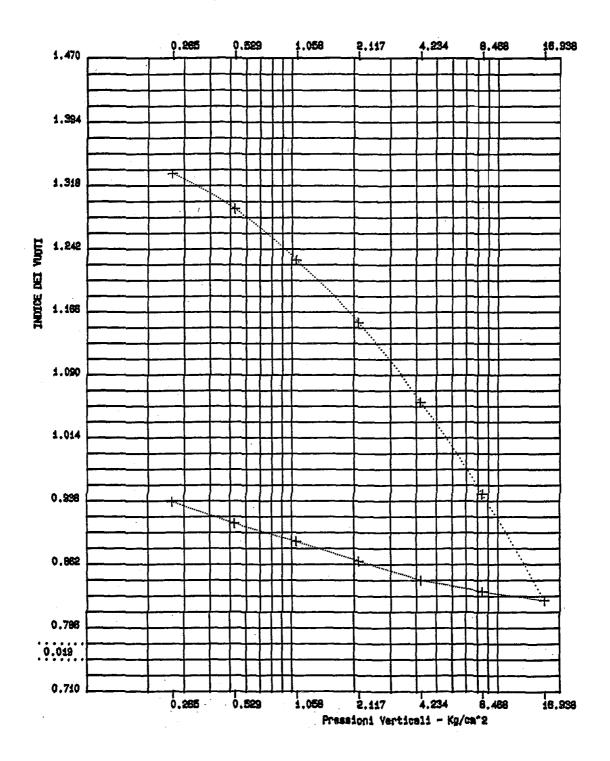
Localita': . . . STAGGIA

Sond: 1 Camp: 1 Prof: 4.50/5.00

INT. PRESSIONE - (Kg/cm²)	COEFF.COMPR.VOL. (cm²/Kg)	
0.529 - 1.058	0.01346	74.3
1.058 - 1.500	0.01195	83.7
1.500 - 2.117	0.01151	86.9
2.117 - 2.500	0.01126	88.8
2.500 - 3.000	0.01098	91.1
3.000 - 3.500	0.01069	93.5
3.500 - 4.234	0.01038	96.4
4,234 - 5.000	0.00840	119.1
5.000 - 6.000	0.00792	126.2
6.000 - 7.000	0.00748	133.7
7.000 - 8.468	0.00704	142.0
8.468 - 9.000	0.00603	165.9
9.000 - 10.000	0.00581	172.1
10.000 - 11.000	0.00556	179.8
11.000 - 12.000	0.00534	187.1
12.000 - 13.000	0.00515	194.1
13.000 - 14.000	0.00498	200.8
14.000 - 15.000	0.00482	207.3
15.000 - 16.938	0.00462	216.4

# PROVA EDOMETRICA (IL) (foglio 1)

Localita': STAGGIA


Sond:3 Camp: 1 Prof: 3.40/3.90 h iniz.= 2.55 cm; h fin.= 1.067 cm; Sezione = 31.17 cm^2 Indice dei vuoti iniziale = 1.390

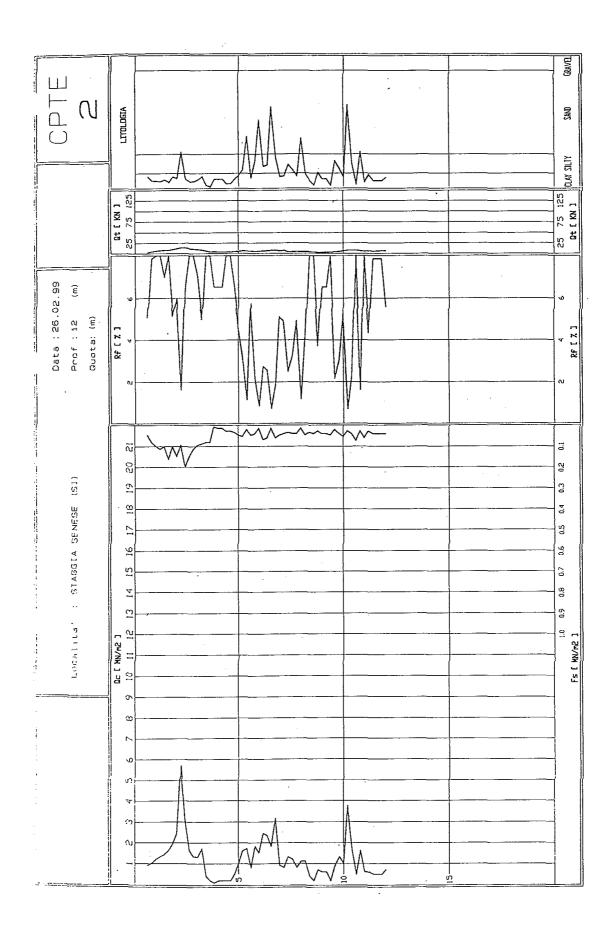
Pres.Vert.(Kg/cm²)	- Delta h (cm) -	Indice dei Vuoti
CICLO DI CARICO		
0.265	0.061	1.333
0.529	0.106	1.291
1.058	0.172	1.229
2.117	0.252	. 1.154
4.234	0.355	1.057
8.468	0.473	0.947
16.938	0.609	0.819
CICLO DI SCARICO		
8.468	0.598	0.829
4.234	0.583	0.843
2.117	0.559	0.866
1.058	0.534	o.889
0.529	0.511	0.911
0,265	0.483	0.937

Densit reale= 2.73 g/cm^3; Dens.app.= 1.70 g/cm^3 Umidit iniz.= 47.2 % Umidit fin.= 42.0 % Osservazioni:

### PROVA EDOMETRICA (foglio 2)

Sond.: 3 Camp.: 1 Prof. (m): 3.40/3.90



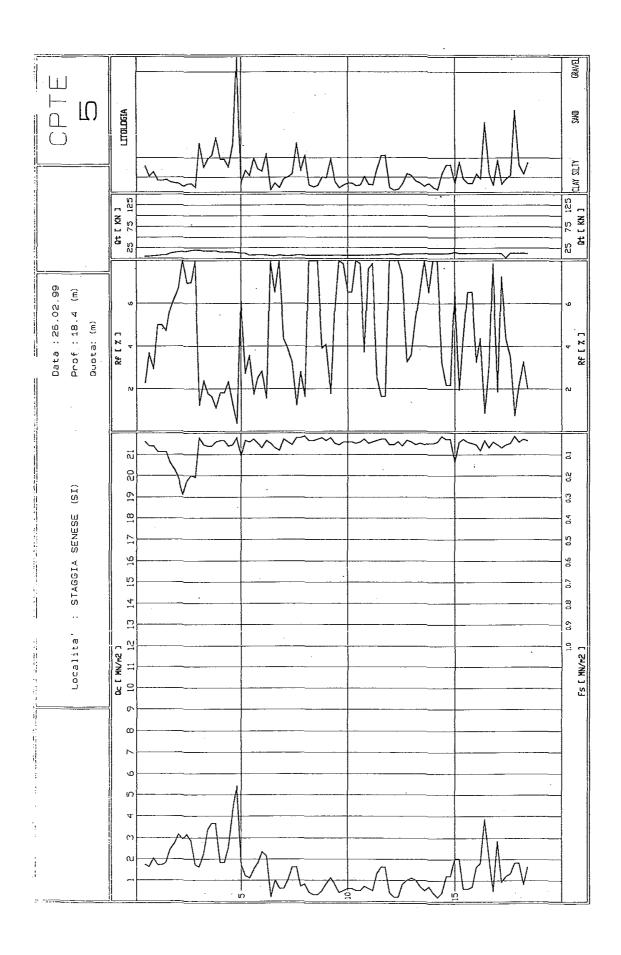

PROVA EDOMETRICA (foglio 3)

Localita': STAGGIA

Sond: 3 Camp: 1 Prof: 3.40/3.90

INT. PRE (Kg/o	ESSIONE – :m²)	COEFF.COMPR.VOL. (cm²/Kg)	- MODULO EDOM. (Kg/cm²)
0.529 -	1.058	0.05175	19.3
1.058 -	1.500	0.03587	27.9
1.500 -	2.117	0.02977	33.6
2.117 -	2.500	0.02552	39.2
2.500 -	3.000	0.02313	43.2
3.000 -	3.500	0.02104	47.5
3.500 -	4.234	0.01 <del>9</del> 07	52.4
4.234 -	5.000	0.01562	64.0
5.000 -	6.000	0.01402	71.3
6.000 -	7.000	0.01263	79.2
7.000 -	8.468	0.01134	88.2
8.468 -	9.000	0,00998	100.2
9.000 -	10.000	0.00945	105.8
10.000 -	11.000	0.00886	112.9
11.000 -	12.000	0.00835	119.7
12.000 -	13.000	0.00792	126.3
13.000 -	14.000	0,00753	132.8
14.000 -	15.000	0.00719	139.0
15.000 -	16.938	0.00676	147.9

INDICE DI COMPR.= 0.423




Localit : STAGGIA SENESE (SI) CPT:2

Data : 26.02.99

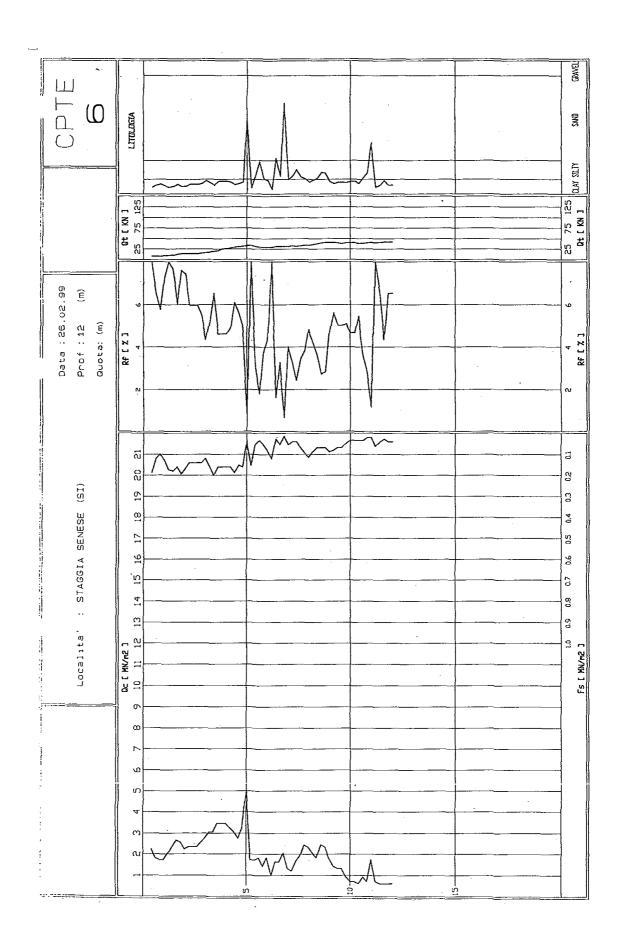
Qc (MN/mq) Resistenza alla punta I (½) Inclinazione Fs (MN/mq) Attrito laterale locale Rf (%) Rapporto di attrito

Fs	(MN/mc	1)	Attrito I	atera.	re locare	Rt (%) Rapporto di attrito
			1 MN/mq =	10.2	Kg/cmg	
Coi	ne ID:	GD.10	0.1000.15		Cone seria	al: 5892 File ID: STAGGIA.2
		00	Fs	O±.	Df	Tino di Torreno
	D	QC-	rs	Qt	Rf	Tipo di Terreno
	0.60	0.92		0.32	5.09	Argilla
	0.80	1.02		0.50	7.85	Argilla
	1.00	1.22		0.64	8.18	Argilla
	1.20 1.40	1.33		0.74	8.55 7.01	Argilla Argilla
	1.60	1.63		0.82	9.81	Argilla
	1.80	1.94		1.00	5.16	Argilla
	2.00	2.45		1.20	6.00	Argilla
	2.20	5.71 3.06		1.40 $1.40$	1.64 6.54	Sabbia Argilla
	2.60	1.63		1.20	8.99	Argilla
	2.80	1.33	0.113	1.10	8.55	Argilla
	3.00	1.33		1.00	7.04	Argilla
	3.20	1.73		0.90	5.00	Argilla
	3.40 3.60	0.41		0.68 0.46	19.62 39.24	Argilla Argilla
	3.80	0.10		0.48	6.54	Argilla
	4.00	0.20		0.42	6.54	Argilla
	4.20	0.20		0.46	6.54	Argilla
	4.40	0.20		0.42	13.08 13.08	Argilla Argilla
	4.80	0.51		0.49	6.54	Argilla
	5.00	1.02		0.56	4.58	Argilla
	5.20	1.63		0.66	3.27	Limo argilloso
	5.40 5.60	1.73 0.82		0.60 0.62	1.15 5.72	Sabbia Arqilla
	5.80	1.83		0.52	2.18	Limo sabbioso
	6.00	1.53		0.56	0.87	Sabbia
	6.20			0.60	2.73	Limo
	6.40 6.60	2.34		0.70 0.76	2.56 0.73	Limo Sabbia
	6.80	3.16		0.74	1.90	Limo sabbioso
	7.00	0.92		0.66	5.09	Argilla
•	7.20	0.82		0.73	4.91	Argilla
	7.40 7.60	1.33		0.46	2.52	Limo Limo argilloso
	7.80	1.22		0.50	3.27 4.91	Argilla
	8.00	1.12		0.39	1.19	Sabbia
	8.20	1.12	0.047	0.44	4.16	Argilla
	8.40 8.60	0.41		0.40	8.18 19.62	Argilla Argilla
	8.80	0.71		0.30	3.74	Limo argilloso
	9.00	0.61		0.32	6.54	Argilla
	9.20	0.61		0.32	6.54	Argilla
	9.40	0.20		0.36	22.89	Argilla
	9.60	0.92		0.40	2.18 3.02	Limo sabbioso Limo argilloso
	10.00	1.02		0.72	5.23	Argilla
	L0.20	3.77		0.79	0.71	Sabbia
	LO.40	1.73		0.80	2.31	Limo
	LO.60 LO.80	0.51 1.63		0.84 0.66	14.39 1.64	Argilla Sabbia
	L1.00	0.61		0.57	9.81	Argilla
	1.20	0.61	0.027	0.68	4.36	Argilla
	11.40	0.51		0.53	7.85	Argilla
	L1.60	0.51		0.59	7.85	Argilla
	L1.80 L2.00	0.51 0.71		0.68	7.85 5.61	Argilla Argilla
-				· ·	<b></b>	<i>y</i> -



Localit : STAGGIA SENESE (SI) CPT:5

Data : 26.02.99

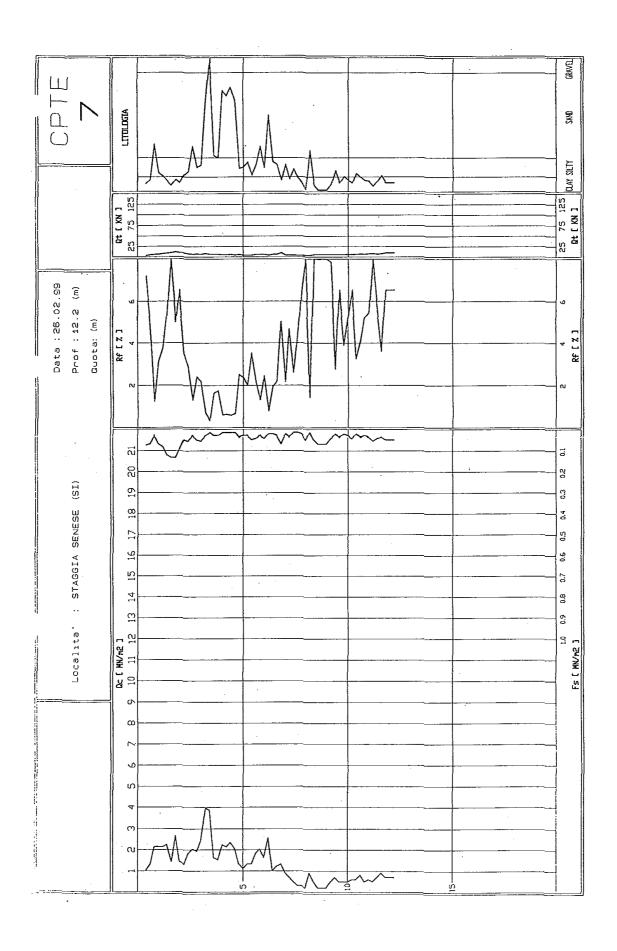

Qc (MN/mq) Resistenza alla punta I (½) Inclinazione Fs (MN/mq) Attrito laterale locale Rf (%) Rapporto di attrito

1 MN/mq = 10.2 Kg/cmq

Cone ID: GD.100.	1000.15	Cone serial: 5892	File ID: STAGGIA.5

	0	- Fig. :	0 <del>.</del>	Df	mino di morrono	
D	Qc	Fs	Qt	Rf	Tipo di Terreno	
0.40	1.73	0.040	0.50	2.31	Limo	
0.60	1.63	0.060	0.52	3.68	Limo argilloso	
0.80	2.04	0.060	0.62	2.94	Limo	
1.00	1.73	0.087	0.70	5.00	Argilla	
1.20	1.73	0.087	0.80	5.00	Argilla	
1.40	1.83	0.087	0.82	4.72	Argilla	
1.60	2.45	0.140	1.20	5.72	Argilla	
1.80	2.75	0.173	1.40	6.30	Argilla	
2.00	3.16	0.213	1.50	6.75	Argilla	
2.20	2.96	0.287	1.60	9.70	Argilla	
2.40	3.16	0.220	1.70	6.96	Argilla	
2.60	2.85	0.200	1.90	7.01	Argilla	
2.80	1.73	0.207	2.00	11.93	Argilla	
3.00	1.63	0.020	2.00	1.23	Sabbia	
3.20	2.24	0.053	1.80	2.38	Limo	
3.40	3.36	0.060	1.80	1.78	Limo sabbioso	
3.60	3.67	0.060	1.80	1.64	Sabbia	
3.80	3.67	0.040	1.80	1.09	Sabbia	
4.00	1.83	0.033	1.50	1.82	Limo sabbioso	
4.20	1.83	0.033	1.50	1.82	Limo sabbioso	
4.40	2.55	0.060	1.50	2.35	Limo	
4.60	4.28	0.053	1.50	1.25	Sabbia	
4.80	5.40	0.020	1.40	0.37	Ghiaia	
5.00	1.73	0.107	1.30	6.16	Argilla	
5.20	1.22	0.033	1.30	2.73	Limo	
5.40	1.12	0.040	0.82	3.57	Limo argilloso	
5.60	1.53	0.027	0.82	1.74	Sabbia Limo	
5.80 6.00	1.83 2.34	0.047		2.54 2.84	Limo	
6.20		0.067	0.90 0.80	1.56	Sabbia	
6.40	2.14 0.20	0.033 0.047	0.70	22.89	Argilla	
6.60	1.02	0.047	0.64	6.54	Argilla	
6.80	0.61	0.080	0.80	13.08	Argilla	
7.00	0.61	0.027	0.72	4.36	Argilla	
7.20	1.02	0.027	0.63	3.92	Limo argilloso	
7.40	1.63	0.053	0.66	3.27	Limo argilloso	•
7.40	1.63	0.033	0.80	1.23	Sabbia	
7.80	0.71	0.020	0.80	2.80	Limo	
8.00	0.82	0.013	0.76	1.64	Sabbia	
8.20	0.41	0.033	0.76	8.18	Argilla	
8.40	0.31	0.033	0.76	10.90	Argilla	
8.60	0.31	0.027	0.76	8.72	Argilla	
8.80	0.51	0.020	0.73	3.92	Limo argilloso	
9.00	0.82	0.033	0.73	4.09	Argilla	
3,00	0,02	0.000	3.73	4.00	9	

				CPT	:5	
D	Qc	Fs	Qt	Rf	Tipo di Terreno	
9.20		0.020	0.75	1.78	Limo sabbioso	
9.40		0.047	0.81	5.72	Argilla	
9.60		0.053	0.80	13.08	Argilla	
9.80		0.040	0.76 0.76	7.85 6.54	Argilla Argilla	
10.00 10.20		0.040	0.78	6.54	Argilla	
10.20		0.047	0.76	9.16	Argilla	
10.40		0.040	0.75	7.85	Argilla	
10.80		0.027	0.73	3.74	Limo argilloso	
11.00		0.047	0.78	7.63	Argilla	
11.20		0.040	0.80	7.85	Argilla	
11.40	1.33	0.033	0.82	2.52	Limo	
11.60		0.027	0.90	1.64	Sabbia	
11.80		0.027	0.90	1.64	Sabbia	
12.00		0.053	1.00	13.08	Argilla	
12.20	•	0.053	1.00	26.16	Argilla	
12.40		0.040	0.73	19.62	Argilla	
12.60		0.060 0.033	1.00 1.00	7.36 3.27	Argilla Limo argilloso	
12.80 13.00		0.033	1.00	3.57	Limo argilloso	
13.20		0.053	1.10	5.23	Argilla	
13.40		0.047	1.10	6.54	Argilla	
13.60		0.053	1.10	10.46	Argilla	
13.80		0.047	1.20	6.54	Argilla	
14.00	0.41	0.047	1,20	11.45	Argilla	
14.20	0.20	0.040	1.20	19.62	Argilla	
14.40		0.013	1.20	3.27	Limo argilloso	
14.60		0.027	1.20	2.18	Limo sabbioso	
14.80		0.027	1.30	2.18	Limo sabbioso	
15.00		0.133	1.50	6.54	Argilla	
15.20 15.40		0.040 0.027	1.30 1.30	1.96 4.36	Limo sabbioso Argilla	
15.40		0.040	1.30	6.54	Argilla	
15.80		0.047	1.30	6.54	Argilla	
16.00		0.053	1.30	3.27	Limo argilloso	
16.20		0.080	1.30	4.36	Argilla	
16.40		0.033	1.30	0.86	Sabbia	
16.60	2.14	0.067	1.30	3.11	Limo argilloso	
16.80		0.040	1.30	7.85	Argilla	
17.00		0.053	1.30	1.87	Limo sabbioso	
17.20		0.067	1.20	7.27	Argilla	
17.40		0.053	0.13	4.36	Argilla	
17.60 17.80		0.047	1.30 1.30	3.52 0.73	Limo argilloso Sabbia	
18.00		0.013 0.040	1.30	2.18	Limo sabbioso	
18.20		0.040	1.30	3.27	Limo argilloso	
18.40		0.033	1.20	2.04	Limo sabbioso	




Localit : STAGGIA SENESE (SI) CPT:6

Data : 26.02.99

Qc (MN/mq) Resistenza alla punta I (½) Inclinazione Fs (MN/mq) Attrito laterale locale Rf (%) Rapporto di attrito

Fs	(MN/mo				e locale	Rf (%	) Rapp	porto	di attri	to
Coi	ne ID:		MN/mq :		•	al: 5892	File	ID: S	STAGGIA.6	
-	D	Qc	Fs	Qt	Rf	Tipo di				_
	0.40	2.24	0.187	0.82	8.32	Argilla	•			
	0.60	1.83	0.120	0.84	6.54	Argilla				
	0.80	1.73	0.100	0.76	5.77	Argilla				
	1.00	1.73	0.127	$0.90 \\ 1.00$	7.31	Argilla Argilla				
	$1.20 \\ 1.40$	2.04 2.34	0.173 0.180	1.00	8.50 7.68	Argilla				
	1.60	2.65	0.160	1.30	6.04	Argilla				
	1.80	2.55	0.193	1.40	7.59	Argilla				
	2.00	2.24	0.167	1.40	7.43	Argilla				
	2.20	2.34	0.140	1.40	5.97	Argilla				
	2.40	2.34	0.140	1.40	5.97	Argilla				
	2.60	2.34	0.140	1.40	5.97	Argilla				
•	2.80	2.55 2.75	0.140 0.120	1.50 1.60	5.49 4.36	Argilla Argilla				
	3.00 3.20	3.06	0.120	1.70	5.23	Argilla				
	3.40	3.06	0.200	2.00	6.54	Argilla	å			
	3.60	3.47	0.160	2.10	4.62	Argilla				
	3.80	3.47	0.160	2.50	4.62	Argilla				
	4.00	3.47	0.160	2.60	4.62	Argilla				
	4.20	3.26	0.160	2.80	4.91	Argilla				
	4.40	3.06	0.187	3.00 3.10	6.10 5.57	Argilla Argilla				
	4.60 4.80	2.75 3.26	0.153 0.160	3.20	4.91	Argilla				
	5.00	5.10	0.040	3.30	0.78	Sabbia				
	5.20	1.73	0.153	3.40	8.85	Argilla				
	5.40	1.73	0.053	3.20	3.08	Limo arg	illoso			
	5.60	1.83	0.033	3.00	1.82	Limo sab				
	5.80	1.43	0.053	3.00	3.74	Limo arg	illoso			
	6.00 6.20	1.83 1.02	0.080 0.120	3.00 3.00	4.36 11.77	Argilla Argilla				
	6.40	1.63	0.027	3.20	1.64	Sabbia				
	6.60	1.63	0.053	3.20	3.27	Limo arg	illoso			
	6.80	2.04	0.013	3.20	0.65	Sabbia				
	7.00	1.33	0.053	3.20	4.02	Argilla				
	7.20	1.22	0.040	3.30	3.27	Limo arg	illoso			
	7.40	1.63	0.040	3.20	2.45	Limo	111000			
	7.60 7.80	$\frac{1.94}{2.45}$	0.067 0.093	3.30 3.40	3.44 3.82	Limo arg Limo arg				
	8.00	2.34	0.113	3.40	4.83	Argilla	111000			
	8.20	2.04	0.087	3.60	4.25	Argilla				
	8.40	1.83	0.067	3.80	3.63	Limo arg	illoso			
	8.60	2.45	0.067	4.00	2.73	Limo				
	8.80	2.34	0.067	4.10	2.84	Limo	÷			
	9.00 9.20	1.83 1.43	0.087 0.080	$4.10 \\ 4.10$	4.72 5.61	Argilla Argilla				
	9.40	1.33	0.067	4.00	5.03	Argilla				
	9.60	1.33	0.067	3.80	5.03	Argilla				
	9.80	0.92	0.047	4.00	5.09	Argilla				
	10.00	0.71	0.033	4.00	4.67	Argilla				
	10.20	0.71	0.033	4.00	4.67	Argilla				
	10.40	0.61	0.033	3.90	5.45	Argilla	111000			
	10.60	0.92 0.71	0.033 0.020	3.90 4.00	3.63 2.80	Limo arg Limo	TITOSO			
	10.80 11.00	1.73	0.020	4.10	1.15	Sabbia				
	11.20	0.71	0.060	4.10	8.41	Argilla				
	11.40	0.61	0.040	4.10	6.54	Argilla				
	11.60	0.61	0.027	4.20	4.36	Argilla				
	11.80	0.61	0.040	4.20	6.54	Argilla				
	12.00	0.61	0.040	4.20	6.54	Argilla				



Localit : STAGGIA SENESE (SI) CPT:7 Data 26.02.99 I (½) Rf (炎) Qc (MN/mq) Resistenza alla punta Inclinazione Fs (MN/mq) Attrito laterale locale Rapporto di attrito 1 MN/mq = 10.2 Kg/cmqFile ID: STAGGIA.7 Cone serial: 5892 Cone ID: GD.100.1000.15 D Fs Qt Rf Tipo di Terreno OC 7.19 0.38 Argilla 0.40 1.02 0.073 Argilla 0.48 0.60 0.067 5.03 1.33 0.80 Sabbia 2.14 0.027 0.60 1.25 0.62 1.00 0.067 3.11 Limo argilloso 2.14 1.20 2.14 0.080 0.80 3.74 Limo argilloso Argilla 1.40 2.24 0.120 0.90 5.35 1.60 1.43 0.133 1.00 9.34 Argilla 1.80 2.65 0.133 1.20 5.03 Argilla 1.00 Argilla 2.00 1.43 0.093 6.54 1.00 3.52 Limo argilloso 2.20 1.33 0.047 2.40 2.91 Limo 1.83 0.053 0.80 2.60 2.04 0.027 0.66 1.31 Sabbia 2.80 1.94 0.047 0.74 2.41 Limo 2.45 3.00 0.70 2.18 Limo sabbioso 0.053 Sabbia 3.20 3.98 0.027 0.90 0.67 3.40 3.87 0.013 0.65 0.34 Ghiaia Sabbia 3.60 1.63 0.027 0.72 1.64 1.53 1.74 3.80 Sabbia 0.027 0.68 4.00 2.24 0.013 0.56 0.59 Sabbia 4.20 2.14 0.013 0.56 0.62 Sabbia 4.40 2.34 0.013 0.64 0.57 Sabbia 4.60 2.04 0.013 Sabbia 0.51 0.65 0.60 4.80 1.33 0.033 2.52 Limo 5.00 1.12 0.027 0.44 2.38 Limo 5.20 1.33 0.027 0.40 2.01 Limo sabbioso 5.40 1.33 0.047 0.44 3.52 Limo argilloso Limo sabbioso 5.60 1.83 0.040 0.60 2.18 5.80 2.04 0.027 0.59 1.31 Sabbia 6.00 1.63 0.040 0.62 2.45 Limo 6.20 2.55 0.43 0.78 Sabbia 0.020 6.40 Limo sabbioso 1.02 0.60 1.96 0.020 6.60 1.22 0.027 0.60 2.18 Limo sabbioso 6.80 1.00 Argilla 1.33 0.067 5.03 7.00 0.92 Limo sabbioso 0.020 0.43 2.18 7.20 0.71 Argilla 0.033 0.42 4.67 7.40 0.51 0.013 0.41 2.62 Limo 7.60 0.31 0.013 0.36 4.36 Argilla Argilla 7.80 0.31 0.36 6.54 0.020 8.00 0.44 22.89 0.20 0.047 Argilla 8.20 0.92 0.013 0.46 1.45 Sabbia 8.40 0.51 0.047 0.62 9.16 Argilla 8.60 0.067 Argilla 0.20 0.62 32.70 8.80 0.20 0.067 0.60 32.70 Argilla 0.20 9.00 0.067 0.60 32.70 Argilla 9.20 7.85 0.51 0.040 0.60 Argilla 9.40 2.80 0.71 0.020 0.60 Limo 9,60 0.51 0.033 0.61 6.54 Argilla Limo argilloso Argilla 9.80 0.020 0.60 3.92 0.51 10.00 0.51 0.027 0.61 5.23 0.61 0.62 10.20 0.040 6.54 Argilla 10.40 0.61 0.020 0.72 3.27 Limo argilloso Argilla 0.76 4.09 10.60 0.82 0.033 0.51 0.70 5.23 10.80 0.027 Argilla Argilla 11.00 0.61 0.033 0.80 5.45 11.20 0.51 0.053 0.80 10.46 Argilla 0.71 0.040 0.74 Argilla 11.40 5.61 0.80 3.63 Limo argilloso 11.60 0.92 0.033 11.80 0.71 0.047 1.00 6.54 Argilla 0.047 6.54 12.00 0.71 1.00 Argilla 0.71 0.047 6.54 12,20 1.00 Argilla

## **COMUNE DI POGGIBONSI**

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:

218

RIFERIMENTO PRATICA

**EDILIZIA:** 

02/0279 E 06/0561

LOCALITÀ:

LOC. STAGGIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

PIANO DI RECUPERO "STAGGIA 5"

**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

**ALLEGATI:** 

2 CAROTAGGI CONTINUI

3 CERTIFICATI DI LABORATORIO

1 STRATIGRAFIA POZZO

**DATA INDAGINE:** 

14/02/2001

**NOTE:** 

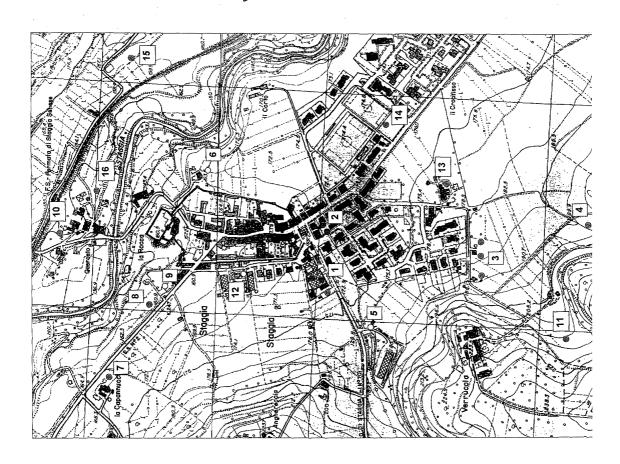
sulla corografia ubicativa la stratigrafia è

identificata al n. 3

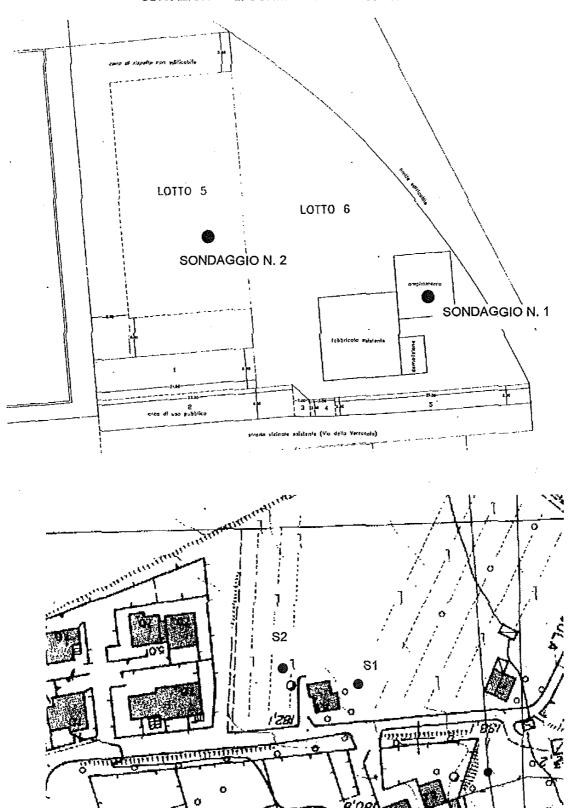
COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0


PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA



#### UBICAZIONE DEI SONDAGGI GEOGNOSTICI

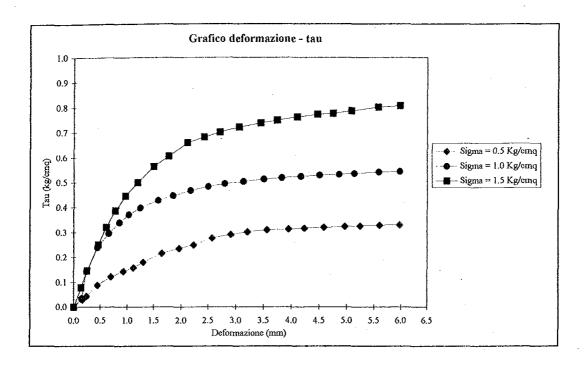


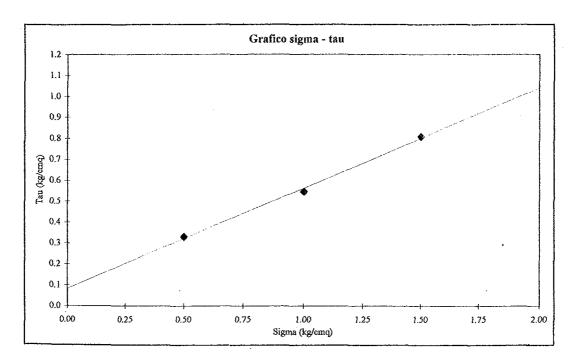
						SONDAGGIO	GEC	GNOS	TICO		1		
						· · · · · · · · · · · · · · · · · · ·				Data	14.02.	2001	
	Localita': VERRUCOLA - STAGGIA SENESE Comune POGGIBONSI							NSI		Quo	ta 18	4.00 m	1
B @ Perforazione	S spessore strati	m. (s.l.m.)	Profondità dal piano campagna m.	riferimento m.	Stratigrafia	DESCRIZIONE	% Carotaggio	ind, ind, semi indist	3 Profondità falda	g quota falda	S.P.T.	Pocket penetrometro	kg/cm² Vane test
	1,00	183,00	1.00	.5		Terreno agrario	98						
- 4	2.50			1.5 2 2.5		Limo sabbioso marrone scuro con concrezioni calcaree	90					3.5 3.9 3.4 3.8 4.0	
0	0.50	180,50 180,00	3.50 4.00	3.5		Campione indisturbato		-3.50					
	1.00	179,00	5.00	4.5		Sabbia limosa debolmente argillosa di colore ocra con passaggi grigi dove la componente argillosa è maggiore	90	-4.00				2,0 2.0 1.4 1.4 1.5	
	3.00			5.5 6 6.5 7		Sabbia limosa debolmente argillosa di colore ocra	90		-7.00	-177.00 		2.0 1.4 1.8 1.5 2.1 1.6 1.4 1.5 2.0 2.0	
	0.50	176.00	-8.00	8		Campione indisturbato		84C2 84C2			-	2.0	$-\parallel$
	0.50	175.50	-8.50			Sabbia limosa debolmente argillosa di colore ocra	90	-8,50				1.5 2.0	
	1.00	175.00	-9.00 -10.00	9 9.5 10		Argilla limosa debolmente sabbiosa di colore grigio	85					2.0 2.0 3.0 3.5 4.0	

						SONDAGGIO (	3EO	GNOS	TICO		2		
										Data	14.02.2	2001	
	Localit	ta': VERR	RUCOLA	S	TAGGIA	SENESE Comune POGGII	BON	ISI		Quo	ta 18:	3.00 m	1
3 Ø Perforazione	B spessore strati	(s.l.m.)	Profondità dal piano campagna m.	riferimento m.	Stratigrafia	DESCRIZIONE	% Carotaggio	ind. indisemi indist. indist.	∃ Profondità falda	g quota falda	S.P.T.	পূ Pocket penetrometro	kg/cm² Vane test
	1.00	182.00	-1.00	.5		Terreno agrario	98	•					
, ,	1.00	181.00	-2.00	1.5		Limo debolmente sabbioso marrone chiaro con concrezioni calcaree	90					4.5 5,5 F.S. 6.0	
[	1.30			2.5		Limo sabbioso marrone scuro con concrezioni calcaree	92				:	5.5 F.S. 5.8	
\	0.30	179,70	3.30			Compiens indisturbate		-3.30 55 57				5.7	$\vdash$
V	0.40	179.40	-3.60	3.5		Campione indisturbato Limo sabbioso marrone scuro		-3.60				5.7	$\vdash$
7	0.40	179.00	-4.00	4		con concrezioni calcaree						F.S.	
	1.00	_178.00	-5.00	4.5		Limo debolmente sabbioso con presenz di argilla di colore marrone, con striature nere di materiale organico						5.0 5.2 6.0 5.4 5.8	
	1.50	176.50	-6.50	5.5 6		Sabbia limosa debolmente argillosa di colore ocra con molte concrezioni calcaree	90	-		-176.50		2.0 1.4 1.8 1.5 2.1 1.6	
	3.00		5.55	6.5 7 7.5		Limo sabbioso argilloso di colore grigio verde	90		-6.50			2.4 2.5 2.0 3.0 2.5 3.0 2.0	
		173.50	~9.50	8.5 9								2.4 3.0 2.9 2.4 2.0 3.0	
			-9.00	9.5	, 5:V37-A	Non è stato possibile procedere oltre nella perforazione in quanto il carotiere non tratteneva il terreno perforato					_	- J.J	

				_
	74.014	Profondità:	3 5 4 6	
Campione: S	S1C1	Protonaits:	3.5 - 4.0 m	
	)X()I	X ) 01011011	-10 -110 III	

### PROVA DI TAGLIO DIRETTO NON CONSOLIDATA NON DRENATA


	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (gr/cmc)	1.75	1.77	1.79
Peso di volume secco iniziale (gr/cmc)	1.35	1.37	1.38
Contenuto d'acqua iniziale (%)	29.71	29.74	29.76
Velocità di deformazione (mm/min.)	1.0	1.0	1.0
Sigma (kg/cmq)	0.5	1.0	1.5
Tau a rottura (kg/cmq)	0.330	0.545	0.807


Provi	no 1	Provin	10 2	Provino 3		
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau	
(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	
0.16	0.029	0.15	0.034	0.14	0.077	
0.24	0.043	0.24	0.144	0,25	0.146	
0.45	0.088	0.44	0.239	0.46	0.250	
0.69	0.121	0.65	0.296	0.61	0.320	
0.93	0.143	0.85	0.339	0.77	0.386	
1.11	0.158	1.03	0.371	0.96	0.446	
1.30	0.180	1.25	0.397	1.19	0.499	
1.64	0.216	1.57	0.428	1,50	0.564	
1.96	0.235	1.85	0.447	1.77	0.605	
2.23	0.249	2.17	0.468	2.11	0.659	
2.57	0.277	2.50	0.483	2.42	0.682	
2.91	0.291	2.80	0.494	2.71	0.701	
3.21	0.302	3.13	0.504	3.05	0.721	
3.56	0.310	3.50	0.513	3.44	0.738	
3.95	0.313	3.82	0.518	3.74	0.749	
4.23	0.316	4.17	0.524	4.10	0.762	
4.58	0.320	4.50	0.529	4.46	0.773	
4.97	0.324	4.85	0.532	4.74	0.777	
5.24	0.326	5,14	0.536	5,08	0.787	
5.60	0.328	5.58	0.542	5.57	0.801	
5.98	0.330	5.98	0.545	5.98	0.807	

Cu = 0.08 kg/cmq

 $\varphi = 25.5^{\circ}$ 





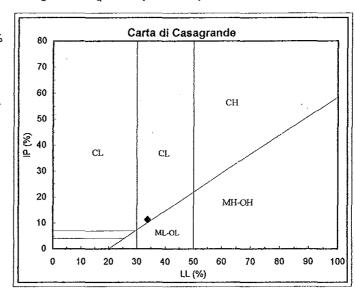


Campione: S1C1 Profondità: 3.5 - 4.0 m

Descrizione: 0 - 20 cm limo argilloso sabbioso ocra con chiazze di ferro / manganese e sporadici frammenti litici; 20 - 50 cm limo sabbioso argilloso ocra (prove nel primo livello)

### LIMITI DI ATTERBERG

Umidità naturale (Wn) = 29.71%


Limite di liquidità (LL) = 33.8%

Limite di plasticità (LP) = 22.5%

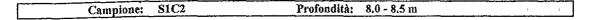
Indice di plasticità (IP) = 11.3%

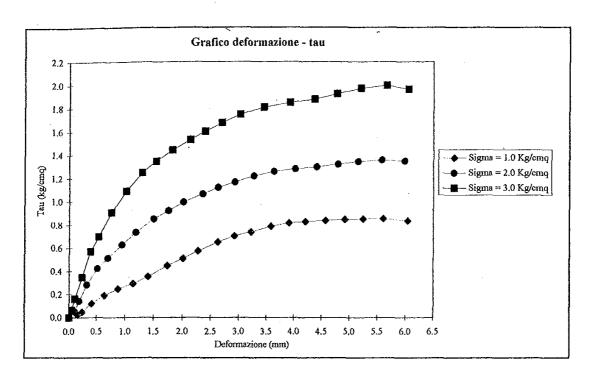
Indice di consistenza (Ic) = 0.36

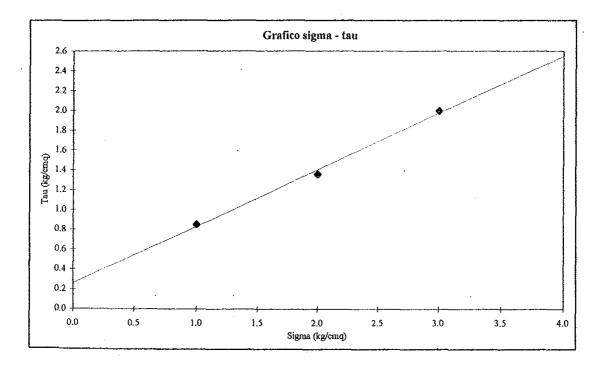
CL = argille inorganiche di media plasticità



0 1 0100	D., C. J. 124 . O.O. O.C.,
Campione: S1C2	Profondità: 8.0 - 8.5 m
Cumpione, or or	zivionomiki oro orom


### PROVA DI TAGLIO DIRETTO NON CONSOLIDATA NON DRENATA


	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (gr/cmc)	1.94	1.97	2.00
Peso di volume secco iniziale (gr/cmc)	1.59	1.61	1.62
Contenuto d'acqua iniziale (%)	22.43	22.72	23.00
Velocità di deformazione (mm/min.)	1.0	1.0	1.0
Sigma (kg/cmq)	1.0	2.0	3.0
Tau a rottura (kg/cmq)	0.854	1.357	1.999


Provino 1		Provino 2		Provino 3	
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	(mm)	(Kg/cmq)
0.16	0.025	0.11	0.050	0.05	0.066
0.24	0.049	0.18	0.142	0.10	0.162
0.41	0.122	0.32	0.283	0.23	0.348
0.63	0.193	0.51	0.424	0.39	0.571
0.87	0.247	0.69	0.513	0.53	0.697
1.13	0.292	0.94	0.627	0.76	0.906
1.40	0.352	1.18	0.735	1.01	1.087
1.74	0.448	1.50	0.850	1.29	1.248
2.01	0.510	1.76	0.921	1.54	1.345
2.27	0.575	2.01	0.995	1.82	1.444
2.62	0.651	2,35	1.065	2.13	1.529
2.92	0.705	2.62	1.121	2.40	1.604
3.22	0.739	2.93	1.167	2.69	1.676
3.58	0.786	3.27	1.220	3,02	1.750
3.91	0.816	3.63	1.258	3.45	1.810
4.21	0.829	4.02	1.281	3.92	1.851
4.56	0.838	4.41	1.299	4.36	1.880
4.92	0.846	4.79	1.321	4.77	1.925
5.24	0.851	5.16	1.344	5.20	1.972
5.60	0.854	5.58	1.357	5,66	1.999
6.04	0.835	5.98	1.348	6.05	1.965

Cu = 0.26 kg/cmq

 $\phi=29.8^{\rm o}$ 





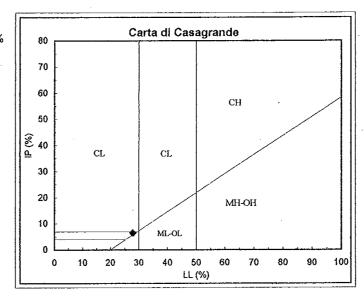


Du-F 1/41 OA OF	
Campione: S1C2 Profondità: 8.0 - 8.5 m	,
Campione: S1C2 Profondità: 8.0 - 8.5 m	

Descrizione: Limo sabbioso ocra

### LIMITI DI ATTERBERG

Umidità naturale (Wn) = 22.49%


Limite di liquidità (LL) = 27.8%

Limite di plasticità (LP) = 21.3%

Indice di plasticità (IP) = 6.5%

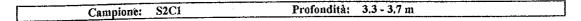
Indice di consistenza (Ic) = 0.82

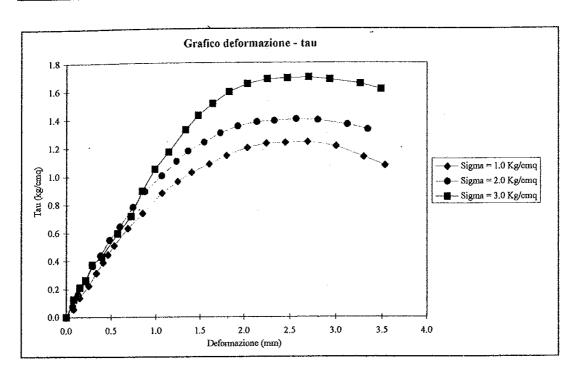
ML-CL = limi inorganici argille inorganiche di bassa plasticità

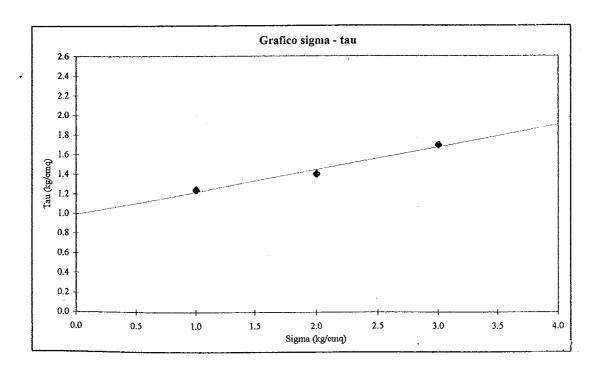


Campione: S2C1	N., C., 141. 22.28
Compione: SZLI	Profondità: 3,3 - 3,7 m
Campions, page	21010241111 010 017 111

### PROVA DI TAGLIO DIRETTO NON CONSOLIDATA NON DRENATA


	Provino 1	Provino 2	Provino 3
Peso di volume naturale iniziale (gr/cmc)	2.04	2.03	2.01
Peso di volume secco iniziale (gr/cmc)	1.71	1.70	1.69
Contenuto d'acqua iniziale (%)	19.58	19.44	19.30
Velocità di deformazione (mm/min.)	1.0	1.0	1.0
Sigma (kg/cmq)	1.0	2.0	3.0
Tau a rottura (kg/cmq)	1.241	1.402	1.697


Provi	no 1	Provin	10 2	Provi	10 3
Scorrimento	Tau	Scorrimento	Tau	Scorrimento	Tau
(mm)	(Kg/cmq)	(mm)	(Kg/cmq)	(mm)	(Kg/cmq)
0.08	0.056	0.07	0.077	0.08	0.127
0.14	0.137	0.13	0.162	0.15	0.212
0.25	0,223	0.21	0.254	0.21	0.264
0.33	0.314	0.29	0.366	0.29	0.374
0.41	0.390	0.38	0.439	0.39	0.430
0.46	0.446	0.48	0.549	0.57	0.594
0.53	0,509	0.59	0.645	0.72	0.716
0.68	0.632	0.74	0.782	0.84	0.894
0.85	0.737	0.87	0.891	0.99	1.049
1.06	0.880	1.06	1.002	1.14	1.170
1.24	0.961	1.23	1.104	1.33	1.327
1.40	1.027	1.36	1.177	1.48	1.427
1.60	1.085	1.55	1.239	1.64	1.511
1.80	1.145	1.73	1.303	1.83	1.594
2.03	1.199	1.93	1.352	2.03	1.651
2.24	1.231	2.14	1.381	2.25	1.684
2.45	1.236	2.33	1.391	2.47	1.690
2.69	1.241	2.56	1.402	2.70	1.697
3.00	1.211	2.80	1.394	2.93	1.681
3.30	1.134	3.12	1.364	3.26	1.652
3.53	1.075	3.34	1.328	3,49	1.612


Cu = 0.99 kg/cmq

 $\phi = 12.8^{\circ}$ 

Rapporto di prova n. 62/2001







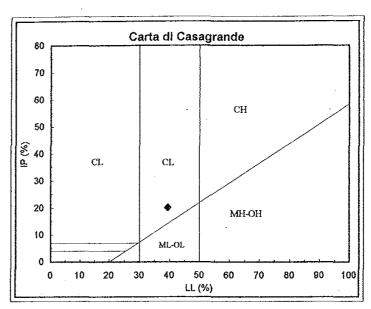
Rapporto di prova n. 62/2001

Campione: S2C1	Profondità: 3.3 - 3.7 m

Descrizione: Limo argilloso sabbioso ocra arancio - grigio con noduli di ferro / manganese

#### LIMITI DI ATTERBERG

Umidità naturale (Wn) = 19.31%


Limite di liquidità (LL) = 39.4%

Limite di plasticità (LP) = 19.2%

Indice di plasticità (IP) = 20.2%

Indice di consistenza (Ic) = 0.99

CL = argille inorganiche di media plasticità



### TABELLA RIASSUNTIVA RAPPORTO DI PROVA N. 62/2001

Località: Verrucola, Staggia (SI)

CAMPIONE	S1C1	S1C2	S2C1
Profondità metri	3.5 - 4.0	8.0 - 8.5	3.3 - 3.7
Prova di taglio U.U.			
C (Kg/cmq)	0.08	0.26	0.99
φ°	25.5	29.8	12.8
Parametri fisici			
Peso vol. nat. (gr/cmc)	1.77	1.97	2.03
Peso vol. secco (gr/cmc)	1.37	1.61	1.70
Limiti di Atterberg			
Umidità naturale (%)	29.71	22.49	19.31
Limite liquido (%)	33.80	27.80	39.40
Limite plastico (%)	0.00%	21.30	19.20
Indice plastico (%)	11.30	6.50	20,20
Indice di consistenza	0.36	0.82	0.99
Classificaz. Casagrande	CL	ML-CL	CL

S1C1: 0 - 20 cm limo argilloso sabbioso ocra con chiazze di ferro / manganese e sporadici frammenti litici; 20 - 50 cm limo sabbioso argilloso ocra (prove nel primo livello)

S1C2: Limo sabbioso ocra

S2C1: Limo argilloso sabbioso ocra arancio - grigio con noduli di ferro / manganese

### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

Profondita' dal P.C.	Descrizione litologica
0/20 26	Salshie Eurose oom
6 - 25	Sabria deb. epillosa em livelli pullmunte epillos:
25 - 28	Apple gup 2

(PROVINCIA DI SIENA)

**SCHEDA INDAGINE N.:** 

219

RIFERIMENTO PRATICA

**EDILIZIA:** 

02/0279

LOCALITÀ:

LOC. STAGGIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

PIANO DI RECUPERO "STAGGIA 5"

**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

**ALLEGATI:** 

1 STRATIGRAFIA POZZO

**DATA INDAGINE:** 

28/10/1997

**NOTE:** 

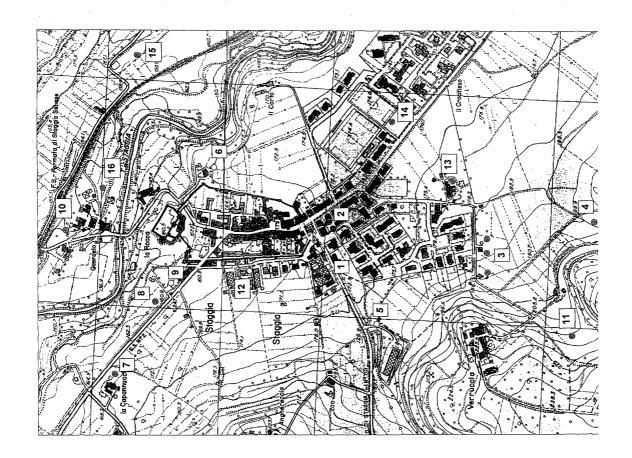
sulla corografia ubicativa la stratigrafia è

identificata al n. 11

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA



11	CARATTERISTICHE	STRATIGRAFICHE DELLA RICERCA
Profon	dita' dal P.C. '	Descrizione litologica
Do	0 2 18 m	Sabbia limosa color oona.
NA 18	a 24 m	Sobio arrillose quigia

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:

220

RIFERIMENTO PRATICA EDILIZIA:

02/0279

LOCALITÀ:

LOC. STAGGIA - COMUNE DI POGGIBONSI

**PROGETTO:** 

PIANO DI RECUPERO "STAGGIA 5"

**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE CPT

2 CAROTAGGI CONTINUI 10 STRATIGRAFIA POZZO

3 CAMPIONI PER PROVE DI LABORATORIO

4 SAGGI GEOGNOSTICI

**ALLEGATI:** 

1 STRATIGRAFIA POZZO

**DATA INDAGINE:** 

n.d.

**NOTE:** 

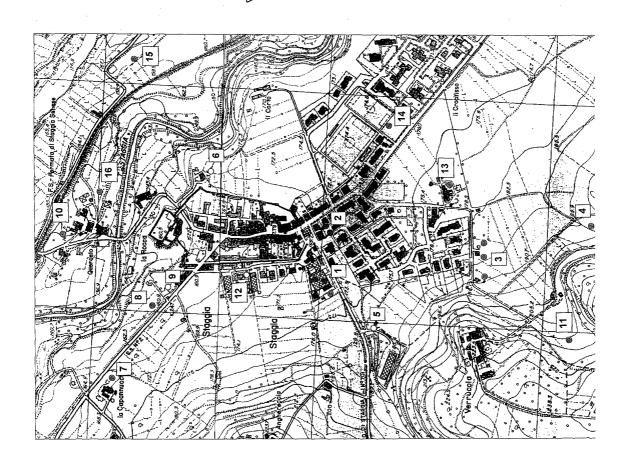
sulla corografia ubicativa la stratigrafia è

identificata al n. 4

COROGRAFIA UBICATIVA DELLE INDAGINI SVOLTE IN PROSSIMITA' DELL'AREA DI INDAGINE

PROVA PENETROMETRICA

SONDAGGIO GEOGNOSTICO


SAGGIO GEOGNOSTICO

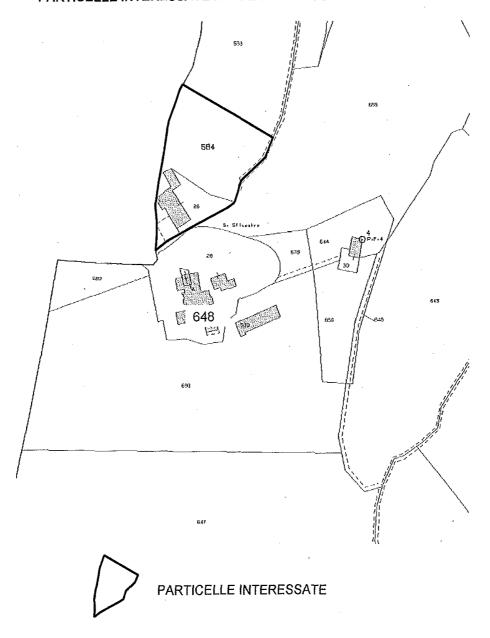
0

PERFORAZIONE POZZO PER ACQUA

AREA DI INDAGINE

AD OGNI NUMERO CORRISPONDE LA RELATIVA DOCUMENTAZIONE ALLEGATA ALLA PRESENTE CARTA

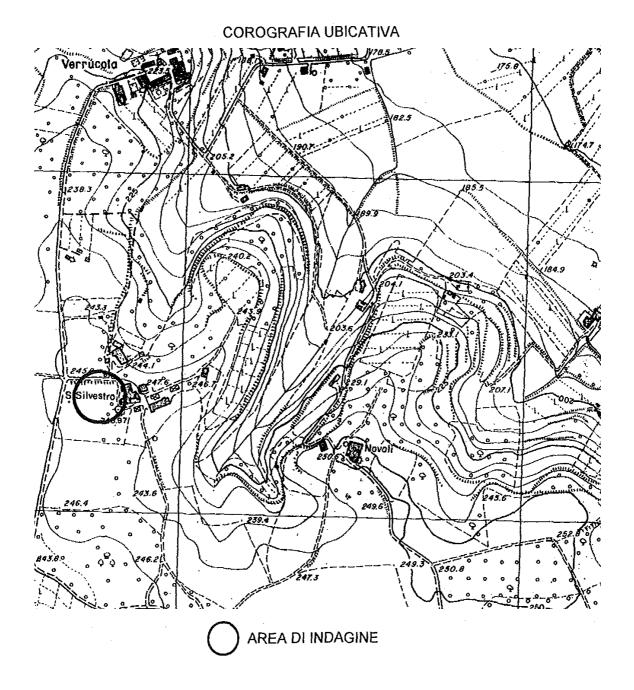



## 04

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0 - 1	Terreuo agrario
1 - 3	Argilla sabbiosa
3 - 4	Ayilla

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	221
RIFERIMENTO PRATICA EDILIZIA:	08/0223
Località:	LOC. SAN SILVESTRO - COMUNE DI POGGIBONSI
PROGETTO:	PERFORAZIONE DI POZZO AD USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
ALLEGATI:	1 STRATIGRAFIA POZZO
Data Indagine:	22/10/2008
Note:	


PARTICELLE INTERESSATE N. 26 E N. 584 FOGLIO N° 67 del N.C.T.

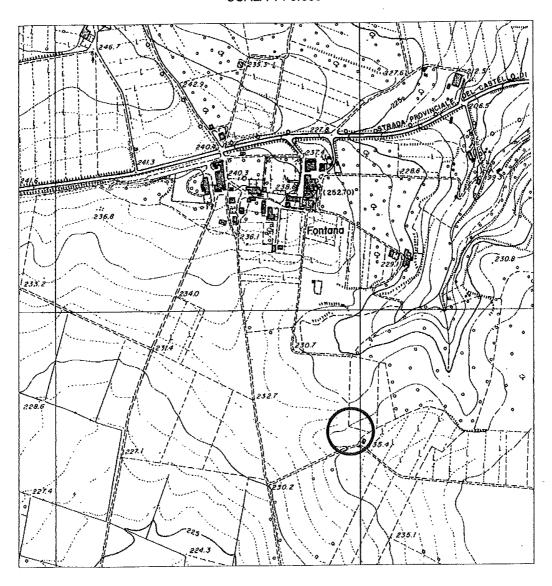


ETÀ	Profondità (m) dal p.c.	Profilo Litologico	Carota	Camp.	DESCRIZIONE LITOLOGICA						
	0 -6				Sobria limeta						
	6-56				Travectivo ecu sobria ecupatta						
	56-80			·	Limo applicas concluidran dualo						
	80-85			Ì	Lime axample dudio.						

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	222
RIFERIMENTO PRATICA EDILIZIA:	04/1097
Località:	LOC. SAN SILVESTRO – COMUNE DI POGGIBONSI
Progetto:	PERFORAZIONE DI POZZO PER USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
<b>A</b> LLEGATI:	1 STRATIGRAFIA POZZO
Data Indagine:	01/12/2004
Note:	




#### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0-10	Sabbia lumosa color ocia
10-29	Sabbia deb. lawosa Travertuessa em livelli litordi
29 - 35	Limo deb. sobbioso oona

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	223
RIFERIMENTO PRATICA EDILIZIA:	04/0766
Località:	LOC. FONTANA – COMUNE DI POGGIBONSI
Progetto:	PERFORAZIONE DI POZZO PER USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	01/09/2004
Note:	

#### COROGRAFIA UBICATIVA SCALA 1 : 5.000





#### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA	
0 - 7	Sobbia Inavertinosa	
7 - 29	Sobbia limosa color ocra	
29-30	Sobbia	
30-36	Sabbia limosa ocna	

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:

224

RIFERIMENTO PRATICA

**EDILIZIA:** 

10/0557

LOCALITÀ:

LOC. FONTANA - COMUNE DI POGGIBONSI

**PROGETTO:** 

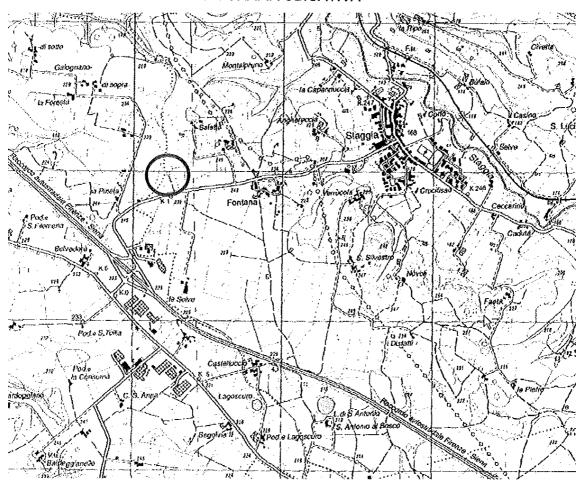
PERFORAZIONE DI POZZO AD USO DOMESTICO

**N**UMERO E TIPO DI INDAGINE:

1 STRATIGRAFIA POZZO

**ALLEGATI:** 

1 STRATIGRAFIA POZZO


**DATA INDAGINE:** 

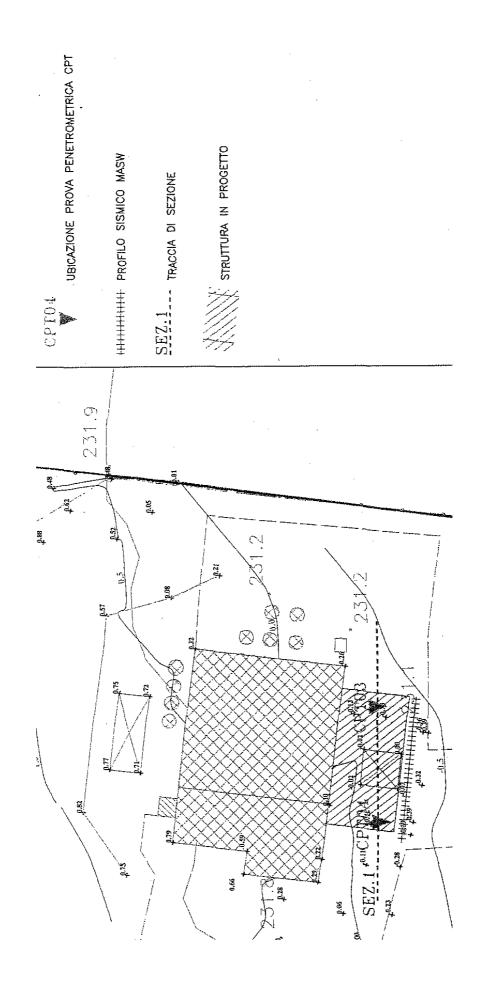
12/11/2010

NOTE:

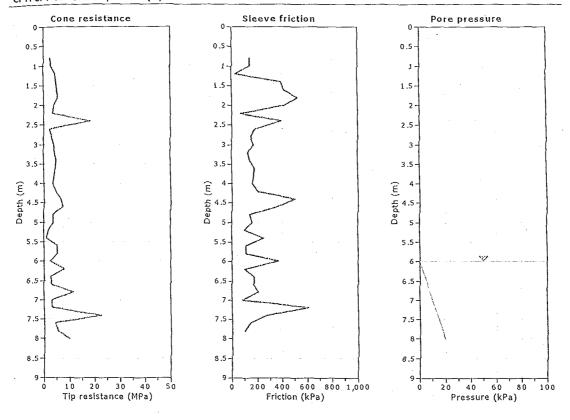
sulla relazione non è riportata l'esatta posizione della perforazione

#### **COROGRAFIA UBICATIVA**

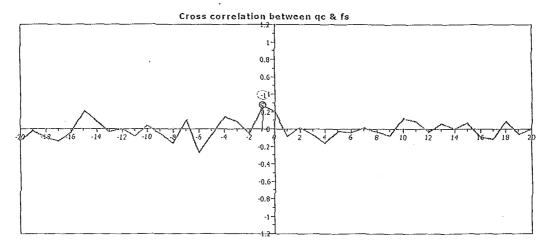


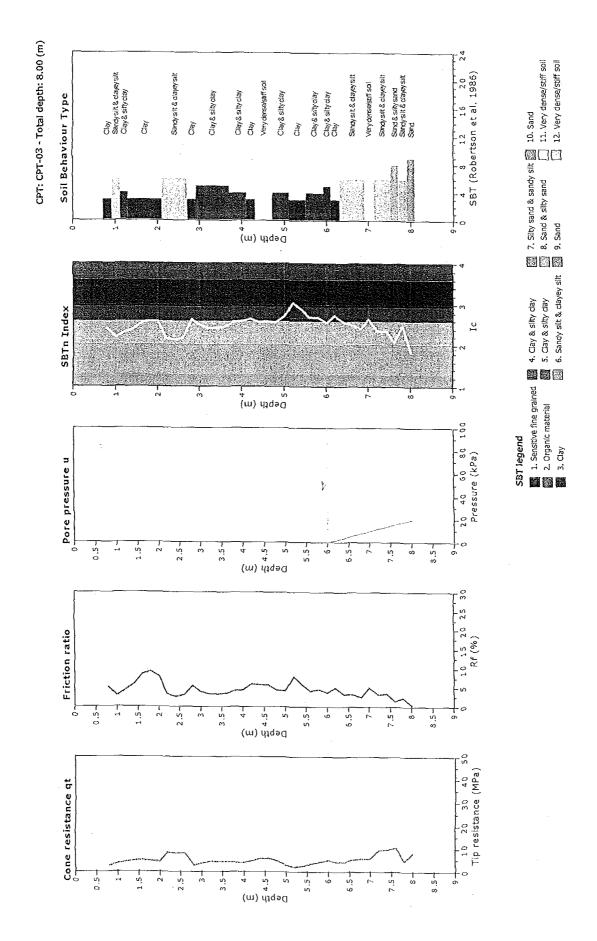



#### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

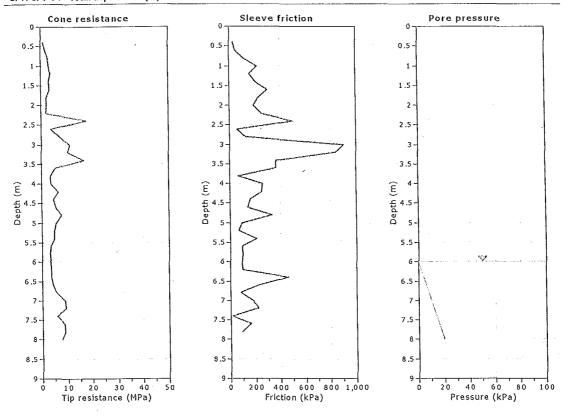

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0-8	LIMO TRAVERTIMOSO
8-20	LIMO ARGILLOSO GRIGLO
20 - 40	SABBIA LIMOSA TRAVERTINOSA
40-50	SABBIA TRAVERTINOSA
50-60	LIMO DEBOLMENTE SABBIOSO

(PROVINCIA DI SIENA)

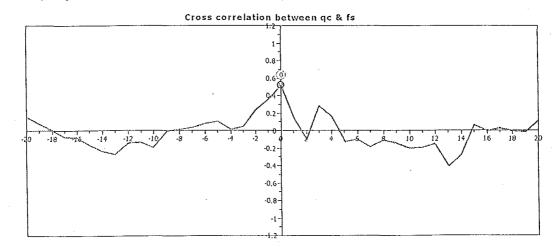

SCHEDA INDAGINE N.:	225
RIFERIMENTO PRATICA EDILIZIA:	11/0082
Località:	LOC. FONTANA – COMUNE DI POGGIBONS
PROGETTO:	REALIZZAZIONE DI UN PUNTO VENDITA
Numero e Tipo di Indagine:	2 PROVE PENETROMETRICHE CPT 1 PROFILO SISMICO
Allegati:	2 CERTIFICATI CPT 1 PROFILO SISMICO
Data Indagine:	03/09/2009
Note:	

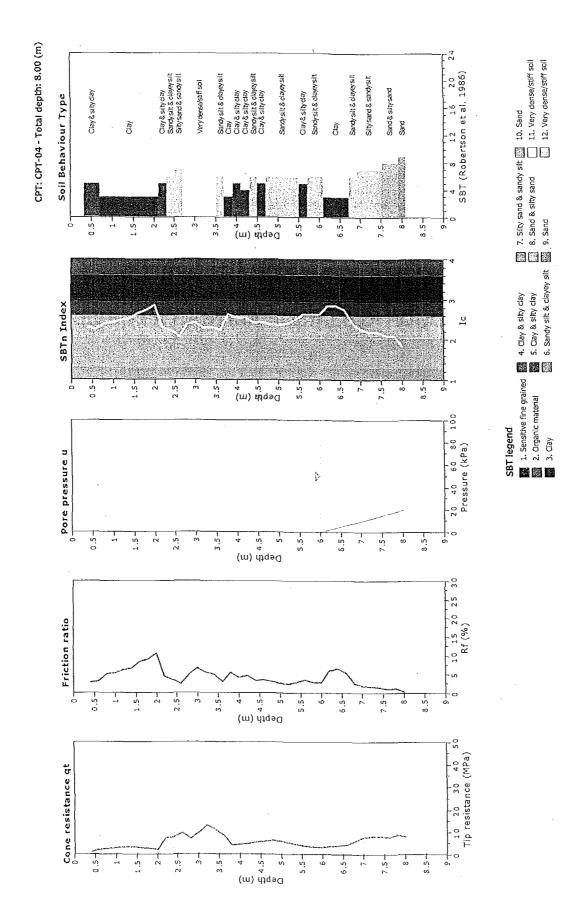



CPT: CPT-03 - Total depth: 8.00 (m)

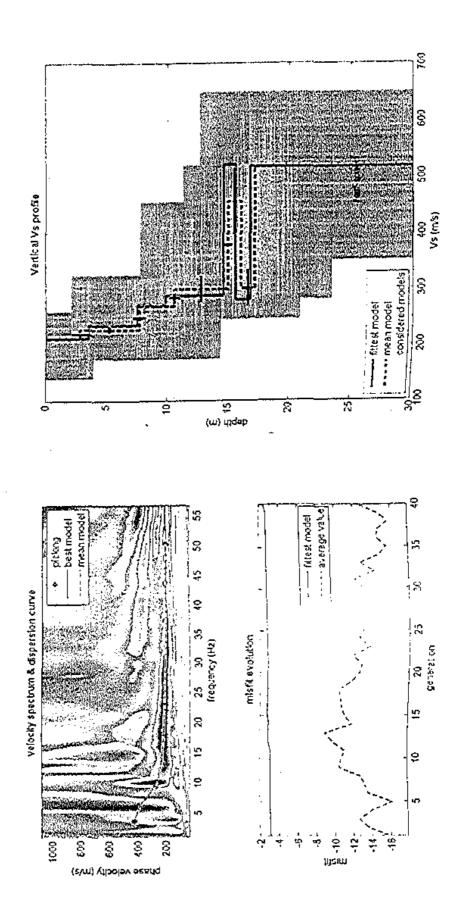



The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurments).




CPT: CPT-04 - Total depth: 8.00 (m)




The plot below presents the cross correlation coeficient between the raw qc and fs values (as measured on the field). X axes presents the lag distance (one lag is the distance between two successive CPT measurements).





VS30 (mean model): 331 m/s



(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:

226

**RIFERIMENTO PRATICA** 

**EDILIZIA:** 

04/0455

LOCALITÀ:

LOC. CASTELLUCCIO - COMUNE DI POGGIBONSI

**PROGETTO:** 

REALIZZAZIONE DI EDIFICIO AD USO CIVILE

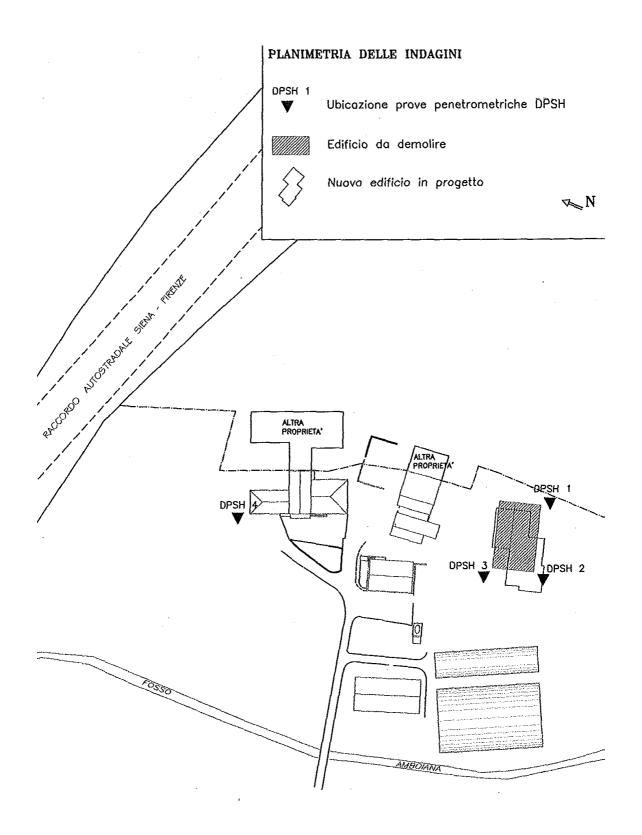
**ABITAZIONE** 

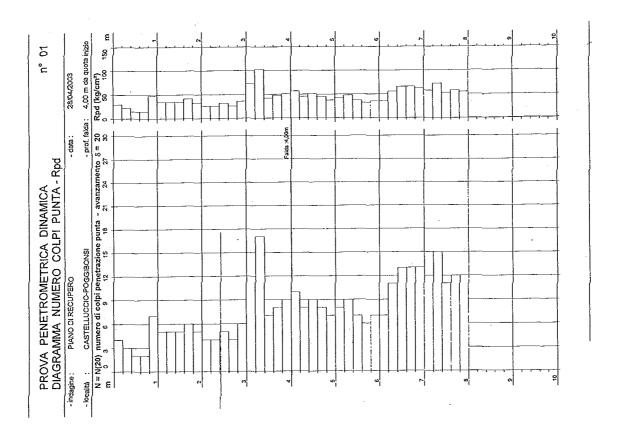
**N**UMERO E TIPO DI INDAGINE:

4 PROVE PENETROMETRICHE DINAMICHE

**ALLEGATI:** 

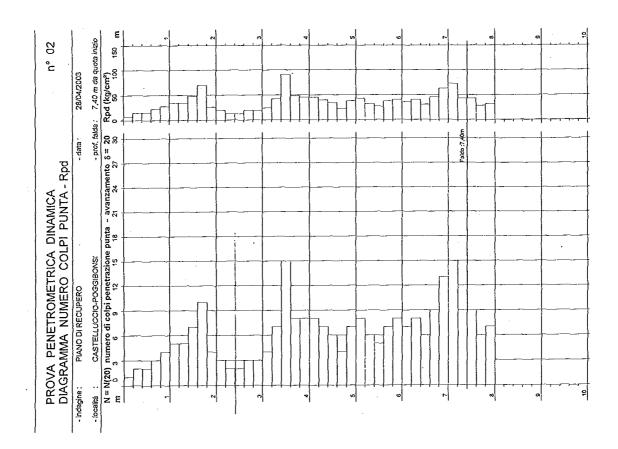
3 CERTIFICATI PROVA PENETROMETRICA DINAMICA


**DATA INDAGINE:** 

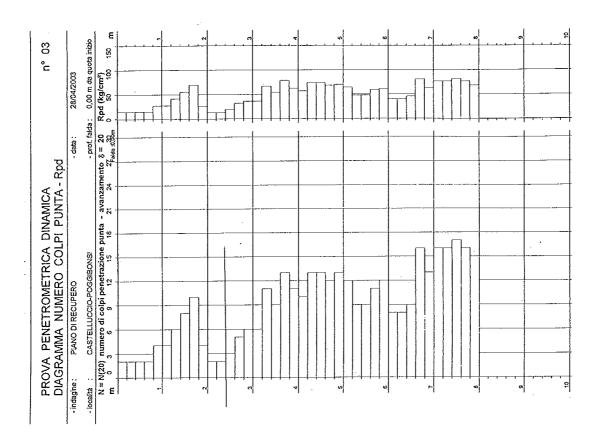

28/04/2003

**NOTE:** 

sulla relazione non è riportato il certificato


di una prova penetrometrica



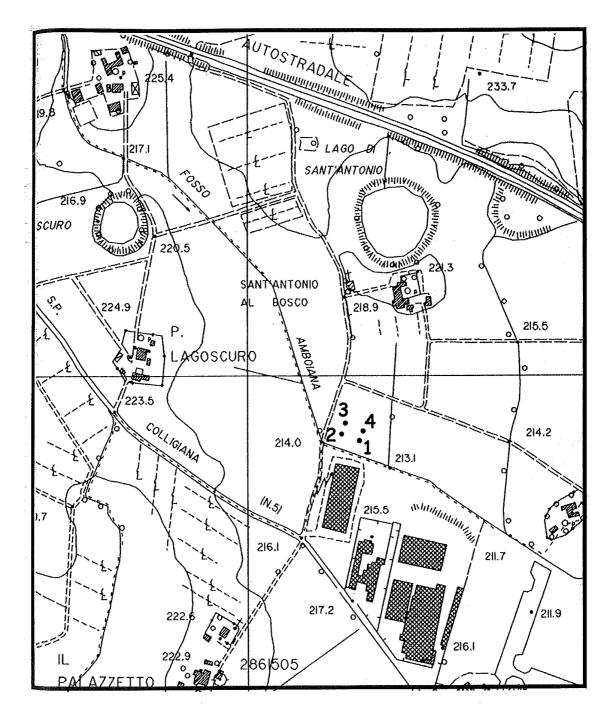



2		ij.	asta	<b>υυυνουουουσοσοσο</b>
n° 0	2003	4,00 m da quota inizio	N(colpi r)	
	28/04/2003		Rpd(kg/cm²) N(colpi	88424844488888888844484 6.60447-44-446784888864 6.0047-44-4467846686
	 2	- prof. falda : - pagina :		
DINAMICA	- data :	P P P	N(colpi p)	5 ๑ ๑ ๑ ๑ ๐ ๐ ๐ ๐ ๐ ๐ ๐
M N			Έ	4444wwwwwwmmmmerrrrrr 86688646886646886646886
CA DI STEN			Prof.(m)	7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
TRI			asta	
ROME RIDIF		GIBONSI	N(colpi r)	
PROVA PENETROMETRICA DINA TABELLE VALORI DI RESISTENZA	PIANO DI RECUPERO	CASTELLUCCIO-POGGIBONSI	Rpd(kg/cm²) N(colpi	844 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	PLANC	: CAST	N(colpi p)	4 8 4 4 4 4 8 4 4 4 8 4 5 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
}	- indagine :	- località	Ē	\$4000000000000000000000000000000000000
	ind	- 100	Prof.(m)	88 8 8 8 8 9 7 7 7 7 7 8 8 8 8 9 7 8 8 8 9 7 8 9 8 8 9 7 8 9 8 8 9 7 8 9 8 9

- PENETROMETRO DINAMICO tipo : DPSH (s. Heavy)
- M (massa battente)≠ 63,50 kg - H (altezza caduta)= 0,75 m - A (area punta)≈ 20,00 cm² - D(dam. punta)≓ 50,50 mm
- Nirmero Coloi Punta N = N(20) [8 = 20 cm] - Uso rivestimento / fanghi iniezione : Si



			n t																					
02		oizio	asta	'n	ഗ	S	Ŋ	φ	Ø	ഗ	ဖ	ω	~	~	7	7	7	ω	Φ	œ	æ	œ	တ	
ີ່	5003	7,40 m da quota inizio 1	N(colpi r)	1	1	1	ļ	İ	1	!	l	ļ	١	I	1	İ	-	*	[	ſ	•	1	1	
	28/04/2003		Rpd(kg/cm²)	45,3	39,6	34,0	7,72	37.4	42,7	32,1	26,7	37,4	40,5	35,4	40,5	80°S	45,5	62,4	72,0	43,2	43,2	28,8	32,0	
MICA	- data :	- prof. falda : - pagina :	N(colpi p)	ω	~	9	4	7	တ	9	ഹ	7	œ	7	ထ	မ	თ	13	15	Ø	တ	ဖ	7	
₹×	}		Ê	4,20	4 40	4,60	4 80	5.00	5,20	5,40	5,60	5,80	9.00	6,20	6,40	6,60	6.80	9,0	7.20	7.40	7,60	7.80	8,00	
SA DI STEN			Prof.(m)	4,00-	4,20-	4,40-	4,60-	4.80	5,00	5,20-	5,40 -	5,60-	5.80	6,00	6.20	6,40-	6.60	6,80	7.00	7.20	7.40	7.60	7,80-	
TRI ESI			asta	-	,-	-	Ψ-	7	~	7	7	7	m	m	ო	ო	ო	4	4	4	4	4	ιņ	
TROME SRI DI R	0	GGIBONSI		. 1	}	1	ļ	}	ļ	ļ	1	}	,	ļ	J	ł	ţ	Į	l	1	ļ	1	1	
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA	PIANO DI RECUPERO	CASTELLUCCIO-POGGIBONS	Rpd(kg/cm²) N(colpi r)	7,4	14.9	14,9	22,3	27,6	28.	34,5	48,3	0,69	25,7	19,3	12,9	12,9	19,3	18,1	24,1	42.2	90,4	48.2	45,3	
PRO/ TABE	PIAN	: CAST	N(colpi p)	₹**	7	ત	ო	4	Ŋ	9	7	9	4	ო	7	2	ო	ო	4	^	15	ω	æ	
	- indagine	- località	Ξ	0,20	0,40	090	0,80	9,	5,	1,40	1,60	1,80	2,00	2,20	2,40	2,60	2,80	3,00	3,20	3,40	3,60	3.80	6,0	
. !	- inc	- 100	Prof.(m)	00'0	0,20	0,40	0.60	0,80	9,0	1.20	1,40-	1,60	1,80	200	2,20	2,40-	2,60-	2,80-	3,00	3,20	3,40-	3,60	3,80-	




ا س		,g	asta	S	ıO.	n	ß	ဖ	ဖ	ဖ	φ	ဖ	^	^	^	7	/	œ	œ	œ	ω	ထ	თ		
n° 03	803	0,00 m da quota inízio 1	N(colpi r)	1	1	ł	İ	į	1	1	į	1	1	}	1	1	ł	1	İ	ı	į	i	l		
	28/04/2003	:	Rpd(kg/cm²) N(colpi r) asta	56,6	73,6	73,6	68,0	69,5	64,1	48,1	48,1	58.8	60,7	40,5	40,5	45,5	6 <u>0</u> 8	62,4	76,8	76,8	81,6	76,8	68,5		
AICA	- data :	- quota litera - prof. falda - pagina :	N(colpi p)	5	13	ည	12	5	건	ത	თ	‡	5	ω	တ	ത	9	5	16	16	17	16	5		
Z Z			Ξ	4,20	4,40	4.60	4.80	5,00	5,20	5,40	5,60	5,80	6,00	6,20	6.40	6,60	6,80	7,00	7,20	7.40	7.60	7.80	8,00		
STEN			Prof.(m)	4,00	4,20-	4.40-	4.60	4,80	2,00	5,20-	5,40-	5,60	5,80	9'00	6,20-	6,40-	6,60	6,80	7.00	7.20	7.40	7.60-	7.80		
ESI			asta	<u>.</u>	-			~	0	S	N	N	ო	ო	ო	ო	ო	4	4	4	4	4	ιņ	_	
PENETROMETRICA DINAMICA E VALORI DI RESISTENZA		SGIBONSI		1	į	ŀ	1	ļ	į	I	l	]	1	1	İ	-	1	ì	1	İ	1	ł	ţ		
	PIANO DI RECUPERO	CASTELLUCCIO-POGGIBONSI	Rpd(kg/cm²) N(colpi r)	14,9	14,9	14.9	6.4	27,6	27,6	41,4	55,2	0.69	25.7	12,9	12,9	19,3	32.2	36.1	36.1	663	542	78.3	62,3		
PROVA	PIAN	CAST	CAST	N(colpi p)	24	7	^	0	14	4	ဖ	00	9	4	7	7	ო	S	φ	တ	1	σ	<u> </u>	<del>;</del> <del>;</del>	
	- indagine	- località	(E)	0.20	0.40	90	080	100	120	40	1,60	1.80	200	2.20	2.40	2,60	2 80	300	3 20	3.40	9	8	8		
	- ind	- 100	Prof.(m)	- 00 0		0.40	90	0.80	-00	1.20-	140-	1.60	180	2.00-	2.20-	2.40-	2.60-	280-	300	320-	3.40.	8	3.80-		

(PROVINCIA DI SIENA)

	227
RIFERIMENTO PRATICA EDILIZIA:	04/0832
Località:	LOC. S. ANTONIO – COMUNE DI POGGIBONSI
PROGETTO:	REALIZZAZIONE DI CAPANNONE ARTIGIANALE
Numero e Tipo di Indagine:	4 PROVE PENETROMETRICHE CPT
Allegati:	4 CERTIFICATI PROVA CPT
Data Indagine:	05/10/2004
Note:	

SCHEDA INDAGINE N.:



UBICAZIONE PROVE PENETROMETRICHE

1
Prova penetrometrica

#### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 1

lavoro :località :

Realizzazione capannone S.Antonio - Comune di Poggibonsi

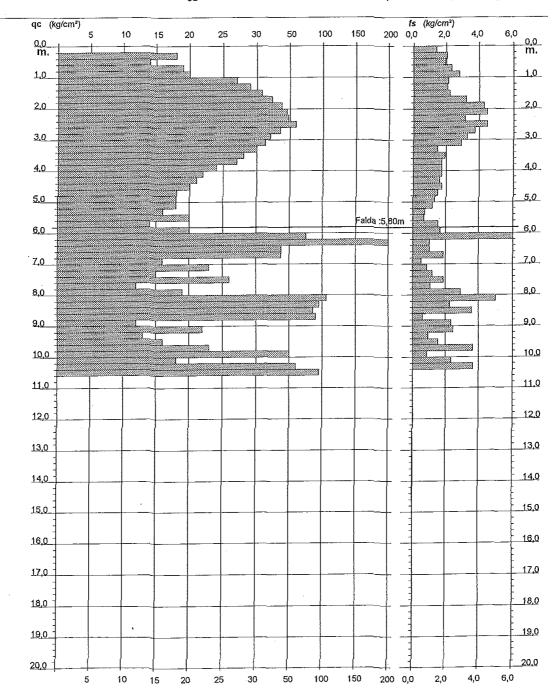
- data : 05/10/2004 - quota inizio : Plano Campagna - prof. falda : 5,80 m da quota inizio

rof.		campagna	qc ka/a	fs cm²	qc/fs	Prof.		campagna	fs /cm²	qc/fs
0,20 0,40 0,60 0,20 0,40 0,60 0,20 0,40 0,60 0,20 0,40 0,60 0,20 0,40 0,60 0,20 0,40 0,40 0,40 0,40 0,40 0,40 0,4	20,0 27,0 29,0 33,0 39,0 45,0 44,0 38,0 35,0 30,0 27,0 22,0 21,0 22,0 21,0 20,0 18,0 18,0 16,0	39,0 45,0 48,0 55,0 69,0 61,0 64,0 72,0 93,0 112,0 116,0 106,0 111,0 94,0 84,0 74,0 50,0 50,0 48,0 47,0 44,0 44,0 40,0 38,0 34,0	18,0 14,0 19,0 27,0 29,0 33,0 39,0 45,0 48,0 49,0 59,0 35,0 30,0 22,0 21,0 22,0 21,0 20,0 18,0 18,0 16,0	1,40 2,07 1,93 2,33 2,80 2,13 2,07 2,20 3,20 4,27 3,13 4,47 3,73 3,27 1,93 1,73 1,73 1,73 1,73 1,73 1,73 1,73 1,7	9,0 7,0 8,0 7,0 13,0 14,0 15,0 11,0 11,0 12,0 12,0 12,0 12,0 14,0 16,0 14,0 13,0 12,0 12,0 20,0 14,0 15,0 22,0	5,60 5,80 6,00 6,20 6,40 6,60 6,80 7,00 7,40 7,60 7,80 8,00 8,20 8,40 8,60 9,20 9,40 9,60 9,20 9,40 9,60 9,80 10,20 10,40 10,60	20,0 14,0 20,0 75,0 200,0 45,0 45,0 16,0 23,0 15,0 26,0 12,0 19,0 106,0 95,0 86,0 90,0 12,0 22,0 13,0 16,0 23,0 50,0 18,0 60,0 95,0	31,0 24,0 43,0 100,0 340,0 60,0 60,0 44,0 31,0 28,0 44,0 35,0 150,0 170,0 120,0 144,0 21,0 57,0 50,0 30,0 46,0 105,0 31,0 95,0	0,67 1,53 1,67 9,33 1,00 1,00 1,87 0,53 0,87 1,20 2,27 3,60 0,60 2,33 2,47 0,93 1,53 3,67 0,87 2,33 3,67	30,0 9,0 12,0 8,00 200,0 45,0 24,0 30,0 27,0 11,0 6,0 21,0 42,0 24,0 150,0 9,0 14,0 10,0 6,0 58,0 8,0 16,0

PENETROMETRO STATICO tipo PAGANI da 10/20t
 COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s
 punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)
 manicotto laterale (superficie 150 cm²)

### PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1


- lavoro ; - località ;

Realizzazione capannone

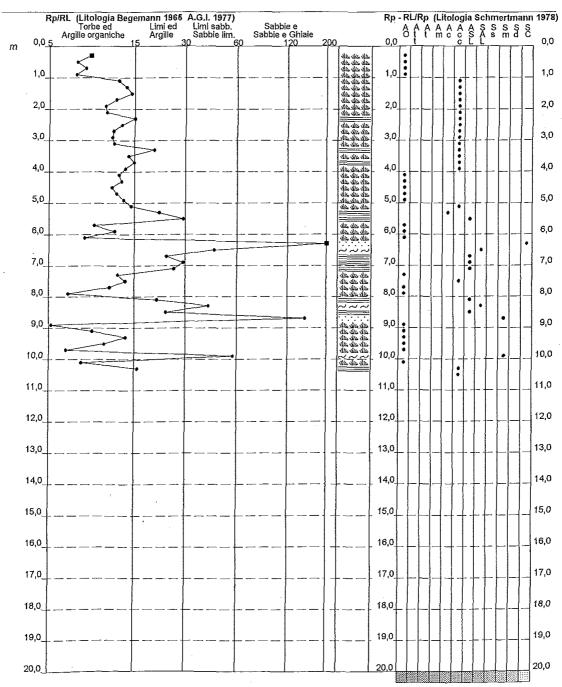
S.Antonio - Comune di Poggibonsi

- data : 05/10/2004

- quota inizio : Piano Campagna - prof. falda : 5,80 m da quota inizio



# PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE


CPT 1

- lavoro : - località : Realizzazione capannone

alità : S.Antonio - Comune di Poggibonsi

- data : 05/10/2004

- quota inizio : Piano Campagna - prof. falda : 5,80 m da quota inizio



### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 2

- lavoro : - località :

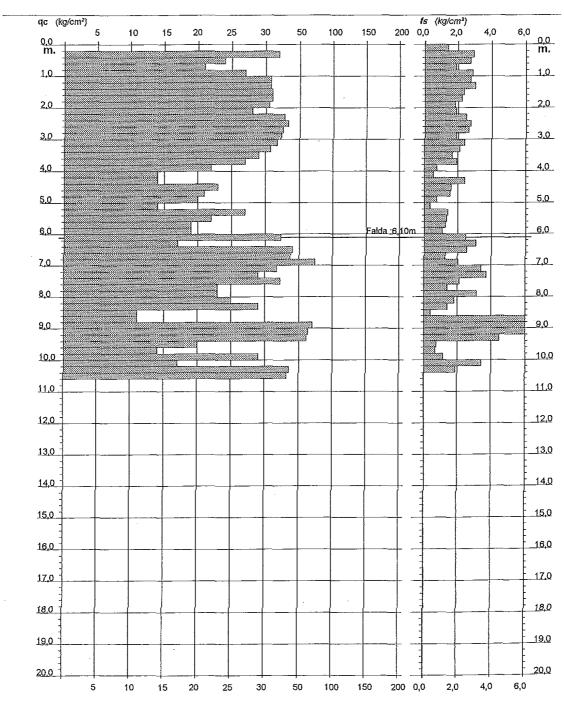
Realizzazione capannone S.Antonio - Comune di Poggibonsi

- data : 05/10/2004 - quota inizio : Piano Campagna - prof. falda : 6,10 m da quota inizio

Prof. m	Letture di	i campagna laterale	qc kg.	fs /cm²	qc/fs	Prof. m	Letture di punta	i campagna laterale	qc kg	fs /cm²	qc/fs
m 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 2,00 2,40 2,60 2,80 3,00 3,20 3,40 3,60 3,80	9unta 38,0 24,0 21,0 27,0 33,0 33,0 34,0 34,0 32,0 28,0 41,0 43,0 40,0 39,0 37,0 33,0 29,0 27,0	18terale  59,0 68,0 62,0 55,0 76,0 74,0 79,0 69,0 65,0 65,0 69,0 81,0 78,0 65,0 65,0 65,0 65,0 65,0	kg.  38,0 24,0 21,0 27,0 33,0 34,0 34,0 34,0 40,0 39,0 37,0 33,0 29,0 27,0	/cm² 1,40 2,93 2,73 1,87 2,87 2,73 3,00 2,33 2,20 1,80 1,87 2,47 2,73 2,60 1,87 2,40 2,13 1,67 1,93	13,0 9,0 11,0 9,0 12,0 11,0 15,0 15,0 15,0 15,0 15,0 15,0 15	5,60 5,80 6,20 6,20 6,40 6,60 6,80 7,00 7,40 7,60 8,00 8,20 8,40 8,80 9,00 9,20	punta  22,0 19,0 19,0 19,0 39,0 17,0 46,0 74,0 37,0 29,0 39,0 23,0 25,0 29,0 11,0 11,0 70,0 63,0	43,0 39,0 38,0 55,0 54,0 92,0 83,0 93,0 68,0 80,0 95,0 55,0 44,0 72,0 56,0 32,0 17,0 160,0	kg. 22,0 19,0 19,0 39,0 46,0 45,0 74,0 37,0 29,0 23,0 25,0 29,0 11,0 11,0 70,0 63,0	/cm² 1,33 1,27 1,07 2,47 3,07 2,53 1,27 2,07 3,40 3,73 2,13 1,40 3,13 1,80 1,40 0,40 6,00 7,13 7,27	16,0 15,0 18,0 16,0 6,0 18,0 36,0 36,0 11,0 8,0 16,0 7,0 14,0 21,0 27,0 27,0 27,0 10,0 9,0
4,00 4,20 4,40	27,0 22,0 14,0 14,0	52,0 51,0 25,0 22,0	22,0 14,0 14,0	0,73 0,53 2,40	30,0 26,0 6,0	9,40 9,60 9,80	61,0 20,0 14,0	170,0 87,0 25,0	61,0 20,0 14,0	4,47 0,73 0,67	14,0 27,0 21,0
4,60 4,80 <b>5,00</b>	23,0 21,0 20,0	59,0 45,0 43,0	23,0 21,0 20,0	1,60 1,53 0,73	14,0 14,0 27,0	10,00 10,20 10,40	29,0 17,0 44,0	39,0 34,0 95,0	29,0 17,0 44,0	1,13 3,40 1,87	26,0 5,0 24,0
5,20 5,40	14,0 27,0	25,0 32,0	14,0 27,0	0,33 1,40	42,0 19,0	10,60	43,0	71,0	43,0	<b>-</b>	

#### PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 2


- lavoro ;

Realizzazione capannone

S.Antonio - Comune di Poggibonsi

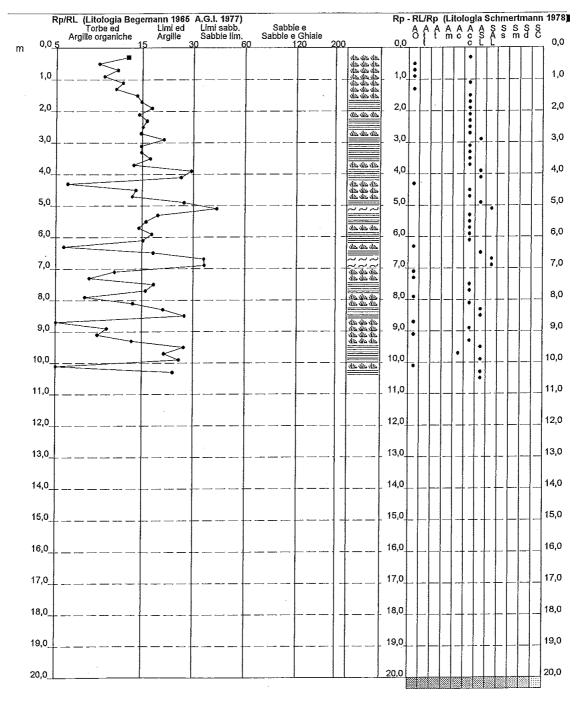
- data : 05/10/2004

- quota inizio : Piano Campagna - prof. falda : 6,10 m da quota inizio



# PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 2


- lavoro :

Realizzazione capannone

S.Antonio - Comune di Poggibonsi

- data : 05/10/2004

- quota inizio : Piano Campagna- prof. falda : 6,10 m da quota inizio



### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 3

- lavoro : - località :

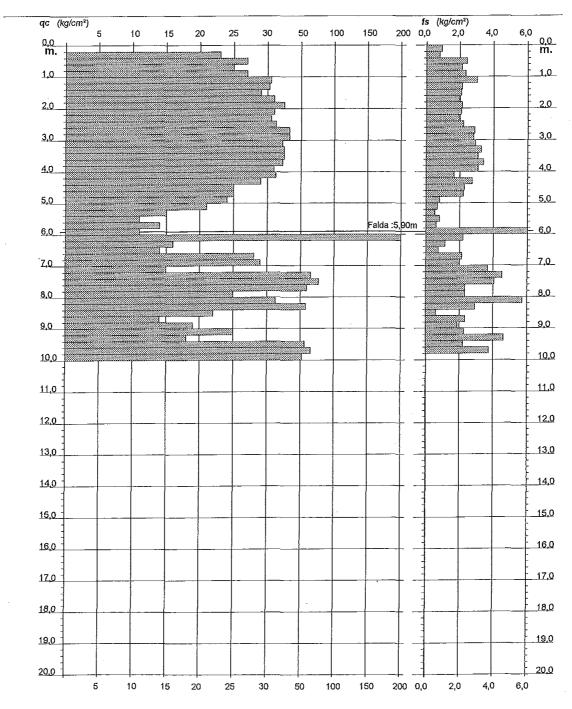
Realizzazione capannone

S.Antonio - Comune di Poggibonsi

- data : - quota inizio : - prof. falda : - pagina : 05/10/2004 Piano Campagna 5,90 m da quota inizio

Prof.		i campagna		fs	qc/fs	Prof.		campagna	qc	fs	qc/fs
m	punta	laterale	kg/	/cm²		m	punta	laterale	Kg.	/cm²	
0,20				0,93		5,20	21,0	33,0	21,0	0,67	31,0
0,40	23,0	37,0	23,0	0,80	29,0	5,40	15,0	25,0	15,0	0,53	28,0
0,60	27,0	39,0	27,0	2,40	11,0	5,60	11,0	19,0	11,0	0,80	14,0
0,80	25,0	61,0	25,0	2,13	12,0	5,80	14,0	26,0	14,0	0,60	23,0
1,00	27,0	59,0	27,0	2,33	12,0	6,00	11,0	20,0	11,0	9,33	1,0
1,20	32,0	67,0	32,0	3,00	11,0	6,20	200,0	340,0	200,0	2,20	91,0
1,40	31,0	76,0	31,0	2,13	15,0	6,40	16,0	49,0	16,0	1,13	14,0
1,60	29,0	61,0	29,0	2,07	14,0	6,60	14,0	31,0	14,0	0,73	19,0
1,80	34,0	65,0	34,0	1,93	18,0	6,80	28,0	39,0	28,0	2,13	13,0
2,00	40,0	69,0	40,0	2,13	19,0	7,00	29,0	61,0	29,0	2,00	14,0
2,20	34,0	66,0	34,0	2,07	16,0	7,20	15,0	45,0	15,0	3,67	4,0
2,40	32,0	63,0	32,0	1,93	17,0	7,40	65,0	120,0	65,0	4,53	14,0
2,60	35,0	64,0	35,0	2,20	16,0	7,60	77,0	145,0	77,0	4,07	19,0
2,80	43,0	76,0	43,0	2,87	15,0	7,80	59,0	120,0	59,0	2,33	25,0
3,00	43.0	86,0	43,0	2,80	15,0	8,00	25,0	60,0	25,0	2,33	11,0
3,20	39,0	81,0	39,0	2,93	13,0	8,20	35,0	70,0	35,0	5,73	6,0
3,40	40,0	84,0	40,0	3,27	12,0	8,40	58,0	144,0	58,0	2,93	20,0
3,60	40,0	89,0	40,0	3,07	13,0	8,60	22,0	66,0	22,0	0,60	37,0
3,80	39,0	85,0	39,0	3,40	11,0	8,80	14,0	23,0	14,0	2,33	6,0
4,00	34,0	85,0	34,0	3,07	11,0	9,00	19,0	54,0	19,0	1,87	10,0
4,20	35,0	81,0	35,0	1,67	21,0	9,20	25,0	53,0	25,0	2,27	11,0
4,40	29,0	54,0	29,0	2,73	11,0	9,40	18,0	52,0	18,0	4,60	4,0
4,60	25,0	66,0	25,0	2,27	11,0	9,60	56,0	125,0	56,0	2,20	25,0
4,80	25,0	59,0	25,0	2,20	. 11,0	9,80	65,0	98,0	65,0	3,73	17,0
5,00	24,0	57,0	24,0	0,80	30,0	10,00	52,0	108,0	52,0		*

### PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA


CPT 3

- lavoro : - località : Realizzazione capannone

alità : S.Antonio - Comune di Poggibonsi

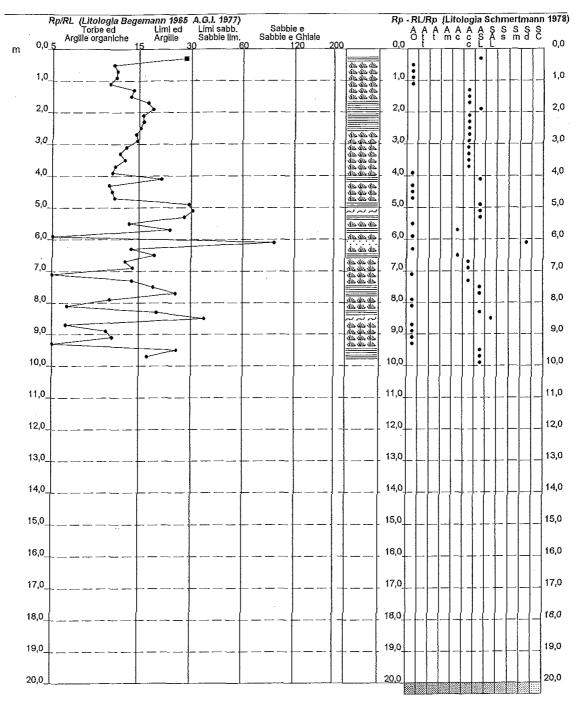
- data : 05/10/2004

- quota inizio : Piano Campagna- prof. falda : 5,90 m da quota inizio



# PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 3


- lavoro :

Realizzazione capannone

- località : S.Antonio - Comune di Poggibonsi

- data : 05/10/2004

- quota inizio : Piano Campagna - prof, falda : 5,90 m da quota inizio



### PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 4

- lavoro : - località :

Realizzazione capannone

S.Antonio - Comune di Poggibonsi

- data : 05/10/2004 - quota inizio : Plano Campagna - prof. falda : 6,30 m da quota inizio - pagina : 1

-	Prof. m	Letture di	campagna laterale	qc kg	fs /cm²	qc/fs	Prof. m	Letture di punta	i campagna laterale		fs /cm²	qc/fs	
	0.00						1 500	26.0	42.0	26.0	467	16.0	
	0,20		40.0		1,40	40.0	5,20	26,0	42,0	26,0	1,67	16,0	
	0,40	22,0	43,0	22,0	1,20	18,0	5,40	27,0	52,0	27,0	0,47	58,0	
	0,60	34,0	52,0	34,0	2,67	13,0	5,60	15,0	22,0	15,0	1,20	12,0	
	0,80	29,0	69,0	29,0	3,53	8,0	5,80	16,0	34,0	16,0	0,40	40,0	
	1,00	27,0	80,0	27,0	3,13	9,0	6,00	27,0	33,0	27,0	1,60	17,0	
	1,20	25,0	72,0	25,0	1,80	14,0	6,20	14,0	38,0	14,0	0,73	19,0	
	1,40	22,0	49,0	22,0	1,53	14,0	6,40	17,0	28,0	17,0	0,80	21,0	
	1,60	23,0	46,0	23,0	1,93	12,0	6,60	17,0	29,0	17,0	1,40	12,0	
	1,80	29,0	58,0	29,0	2,93	10,0	6,80	13,0	34,0	13,0	2,13	6,0	
	2,00	33,0	77,0	33,0	2,33	14,0	7,00	38,0	70,0	38,0	2,93	13,0	
	2,20	32,0	67,0	32,0	2,33	14,0	7,20	25,0	69,0	25,0	0,73	34,0	
	2,40	26,0	61,0	26,0	1,47	18,0	7,40	18,0	29,0	18,0	0,87	21,0	
	2,60	45,0	67,0	45,0	3,47	13,0	7,60	21,0	34,0	21,0	1,87	11,0	
	2,80	23,0	75,0	23,0	1,00	23,0	7,80	19,0	47,0	19,0	1,27	15,0	
	3,00	18,0	33,0	18,0	0,40	45,0	8,00	13,0	32,0	13,0	1,73	7,0	
	3,20	24,0	30,0	24,0	0,60	40,0	8,20	18,0	44,0	18,0	2,20	8,0	
	3,40	20,0	29,0	20,0	0,53	37,0	8,40	54,0	87,0	54,0	10,80	5,0	
	3,60	14,0	22,0	14,0	0,40	35,0	8,60	138,0	300,0	138,0	5,47	25,0	
	3,80	14,0	20,0	14,0	0,40	35,0	8,80	88,0	170,0	88,0	2,13	41,0	
	4,00	16,0	22,0	16,0	0,40	40,0	9,00	90,0	122,0	90,0	1,60	56,0	
	4,20	17,0	23,0	17,0	1,47	12,0	9,20	56,0	80,0	56,0	2,27	25,0	
	4,40	17,0	39,0	17,0	1,53	11,0	9,40	13,0	47,0	13,0	1,07	12,0	
	4,60	22,0	45,0	22,0	0,67	33,0	9,60	15,0	31,0	15,0	2,47	6,0	
	4,80	29,0	39,0	29,0	1,27	23,0	9,80	13,0	50,0	13,0	3,27	4,0	
	5,00	24,0	43,0	24,0	1,07	22,0	10,00	23,0	72,0	23,0			
			•				1 '						

#### PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 4

- lavoro : - località : Realizzazione capannone

10

15

20

25

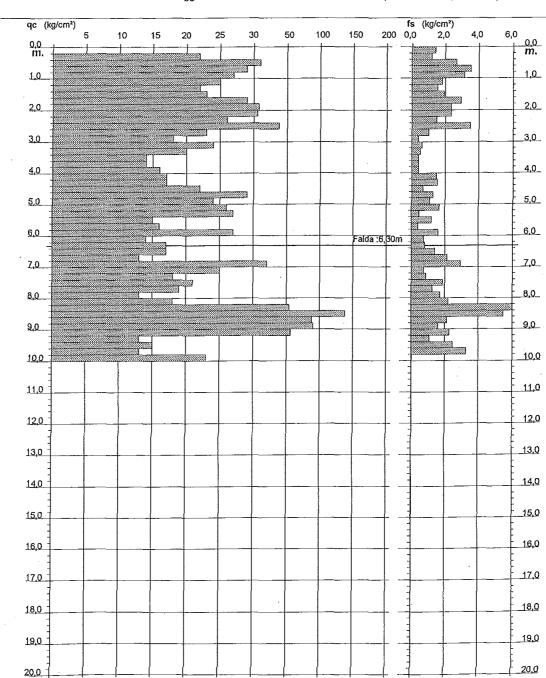
- 30

50

100

200 0,0

2,0


4,0

6,0

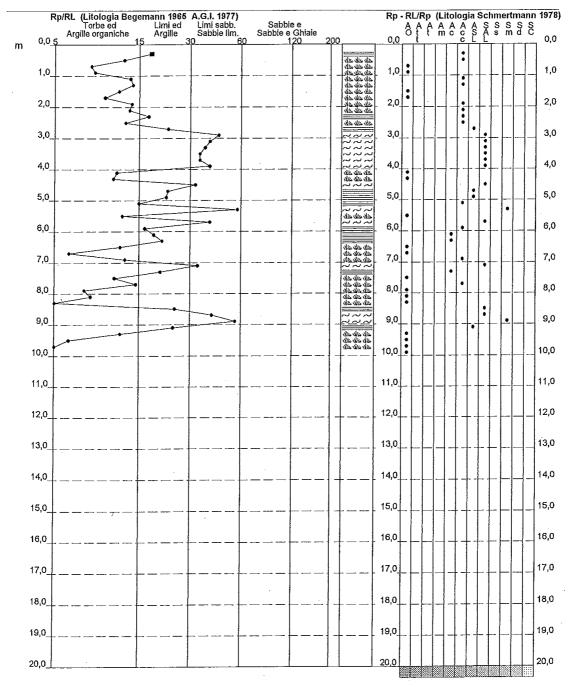
S.Antonio - Comune di Poggibonsi

05/10/2004 - data :

- quota inizio : Piano Campagna - prof. falda : 6,30 m da quota inizio



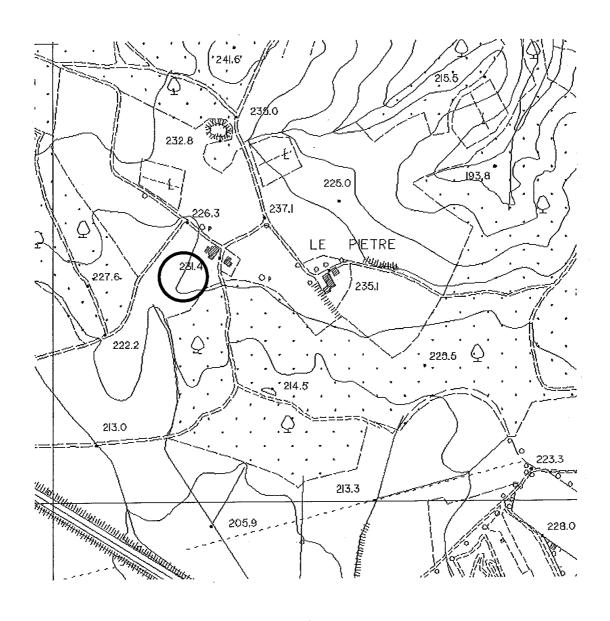
### PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE


CPT 4

- lavoro - località Realizzazione capannone

S.Antonio - Comune di Poggibonsi

- data : 05/10/2004

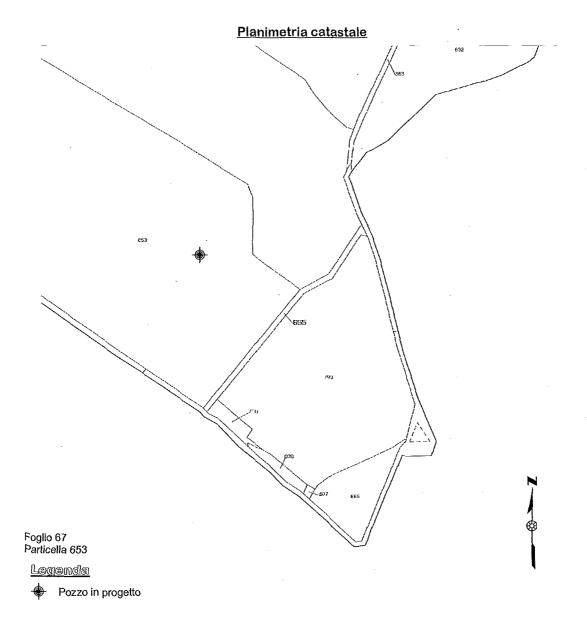

- quota inizio : Piano Campagna 6,30 m da quota inizio - prof. falda :



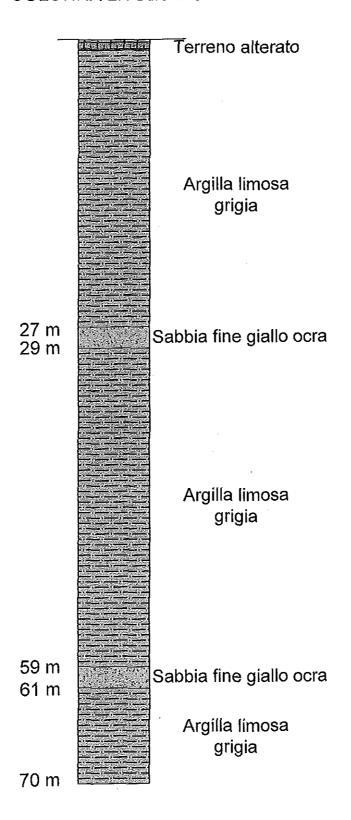
(PROVINCIA DI SIENA)

	228
RIFERIMENTO PRATICA EDILIZIA:	09/0071
Località:	LOC. S. ANTONIO – COMUNE DI POGGIBONSI
PROGETTO:	PERFORAZIONE DI POZZO PER USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	19/05/2009
Note:	

SCHEDA INDAGINE N.:



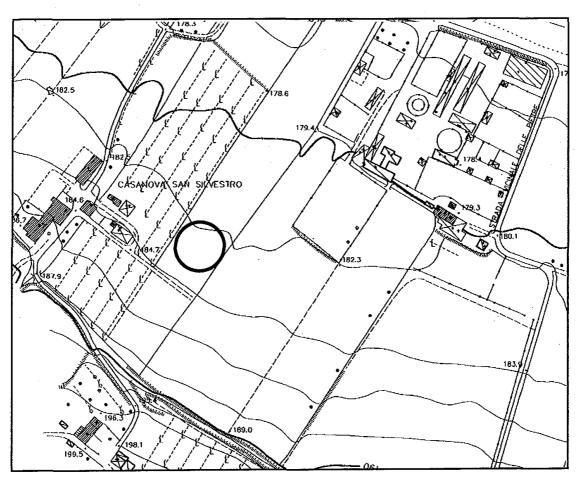




PROFONDITA' (m dal p.c.)	DESCRIZIONE LITOLOGICA
0 – 30	Limi debolmente argillosi marroni rossastri
30 – 35	Limo sabbioso travertinoso
35 – 80	Limo argilloso grigio
80 – 95	Limo debolmente argilloso sabbioso
95 - 110	Limo argilloso grigio

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	229
RIFERIMENTO PRATICA EDILIZIA:	09/0618
Località:	LOC. LE PIETRE – COMUNE DI POGGIBONSI
Progetto:	PERFORAZIONE DI POZZO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
<b>A</b> LLEGATI:	1 STRATIGRAFIA POZZO
Data Indagine:	01/07/2009
Note:	




### COLONNA LITOLOGICA



(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	230
RIFERIMENTO PRATICA EDILIZIA:	03/0854
Località:	LOC. CASANOVA – COMUNE DI POGGIBONSI
PROGETTO:	PERFORAZIONE DI UN POZZO AD USO DOMESTICO
NUMERO E TIPO DI INDAGINE:	1 STRATIGRAFIA POZZO
<b>A</b> LLEGATI:	1 STRATIGRAFIA POZZO
Data Indagine:	2003
Note:	

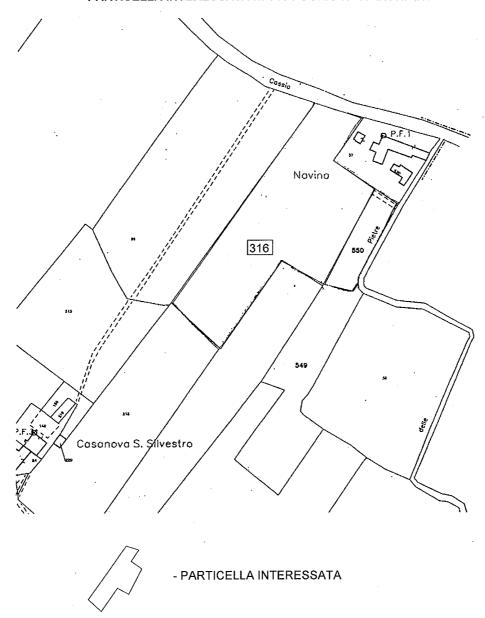
#### COROGRAFIA UBICATIVA





#### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
o - g	Sabbia limosa ocna
8 - 21	Luco ayilloso grizio
21 - 22	Sabbia
22 - 29	Limo gilloso gipo


(PROVINCIA DI SIENA)

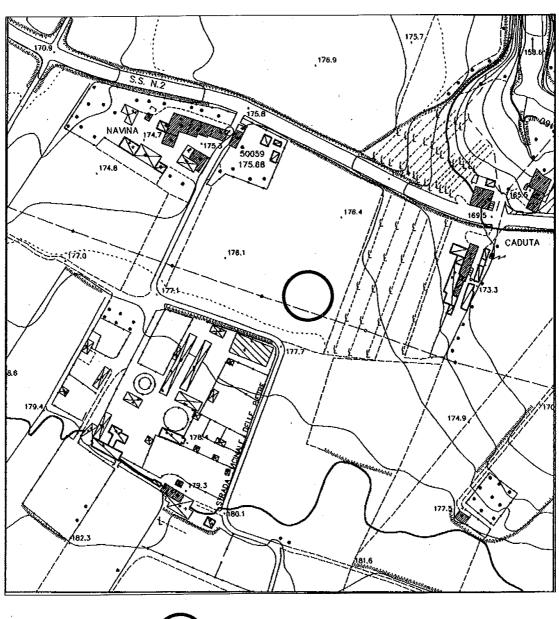
	231
RIFERIMENTO PRATICA EDILIZIA:	06/0646
Località:	LOC. LA CADUTA – COMUNE DI POGGIBONSI
PROGETTO:	PERFORAZIONE DI POZZO PER USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	20/09/2006
Note:	

SCHEDA INDAGINE N.:

#### STRALCIO DI MAPPA CATASTALE

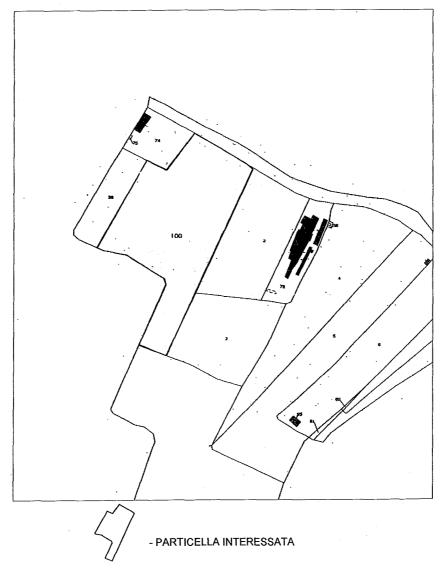
#### PARTICELLA INTERESSATA N. 316 FOGLIO N° 67 del N.C.T.




PROFONDITA' DAL PIANÓ CAMPAGNA	DESCRIZIONE LITOLOGICA
0 - 7	Limi sabbiosi
7 + 18	Ayilla Cineosa zregia
18 - 22	Chisia con subbie
22 - 27	Angilla limosa quina

# Comune di Poggibonsi

(Provincia di Siena)

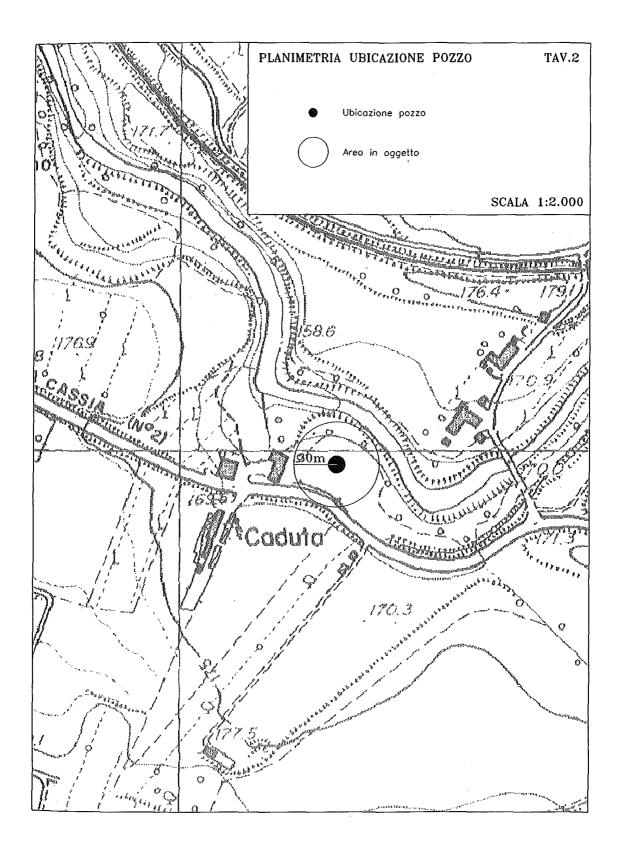

SCHEDA INDAGINE N.:	232
RIFERIMENTO PRATICA EDILIZIA:	04/0201
Località:	loc. Case Navina – Comune di Poggibonsi
Progetto:	Perforazione di pozzo per uso domestico
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	01/03/2004
<b>N</b> оте:	

#### **COROGRAFIA UBICATIVA**



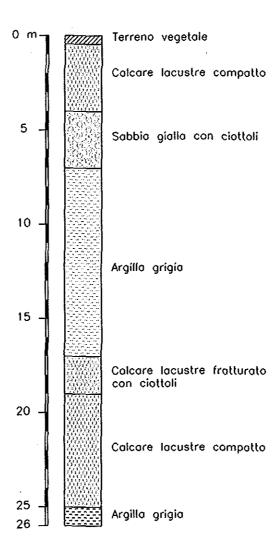


# STRALCIO DI MAPPA CATASTALE PARTICELLA INTERESSATA N. 100 FOGLIO N° 68 del N.C.T.




CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

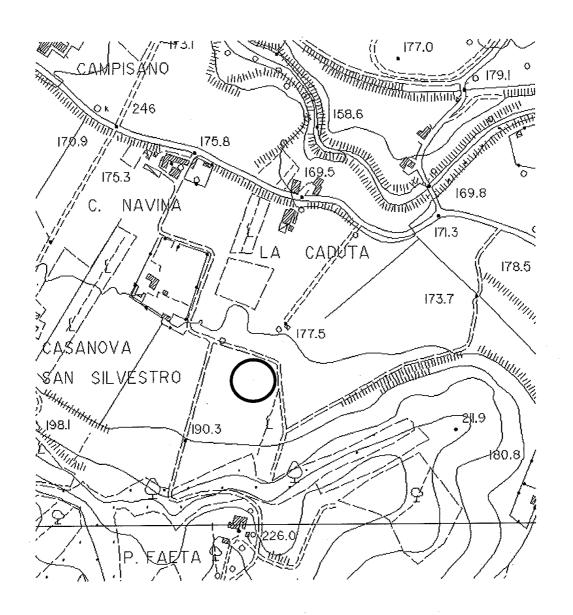
PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0-3	Limo sabbioso
38	Limi tranvertius, on ghiaia
8 - 15	Ayılla sabbiosa guzia
15-16	Troverbino
16-20	Agilla sabbiosa giga
20-20,5	Travertino


(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	233
RIFERIMENTO PRATICA EDILIZIA:	08/0193
Località:	LOC. LA CADUTA – COMUNE DI POGGIBONSI
Progetto:	REALIZZAZIONE DI UN POZZO
lumero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
ALLEGATI:	1 STRATIGRAFIA POZZO
Data Indagine:	2008
Note:	



### Loc. La Caduta - Comune di Poggibonsi (SI)

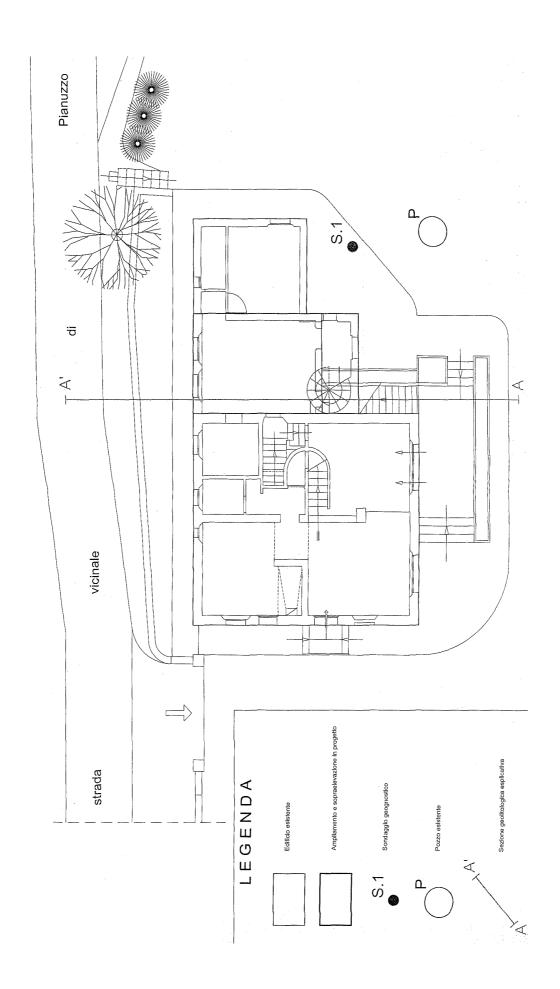

#### **STRATIGRAFIA**



(PROVINCIA DI SIENA)

	234
RIFERIMENTO PRATICA EDILIZIA:	08/1041
Località:	LOC. LA CADUTA – COMUNE DI POGGIBONSI
PROGETTO:	PERFORAZIONE DI POZZO PER USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	13/05/2009
Note:	

SCHEDA INDAGINE N.:

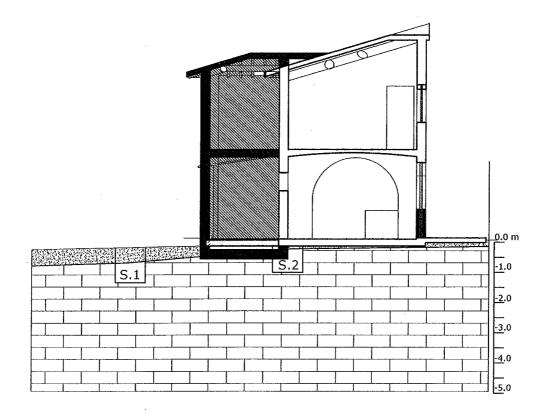





Profondità (m) dal p.c.	Profilo Litologico	Carota	Camp.	DESCRIZIONE LITOLOGICA
0-5				Limo salobieto
5-9	:			Uma axgillator
9-M				Sobbija tra vediciesa
4-18				Limo orgilloso
18-20				Sabbia gluaicoa
20-25				Limo agilloso

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	235
RIFERIMENTO PRATICA EDILIZIA:	09/0330
Località:	LOC. PIANUZZO – COMUNE DI POGGIBONSI
PROGETTO:	AMPLIAMENTO, SOPRAELEVAZIONE E MODIFICA CONSISTENZA DI DUE UNITÀ CONTIGUE DI FABBRICATO PER CIVILE ABITAZIONE
Numero e Tipo di Indagine:	1 CAROTAGGIO CONTINUO
Allegati:	1 CAROTAGGIO CONTINUO
Data Indagine:	24/04/2009
Note:	




	LOCALITA': Pianuzzo, n. 6 - Poggibo	nsi	DATA DAL:	24.04.200		2 D: N		.200	9_
	METODO DI PERFORAZIONE: Rotazione		Ø:.	101	QUOTA	INIZI			
VARADONE E STRATIONALY SO SES	9620290	DEL TERRENO			S.P H	LT. N	POOKET	VANE !	EST RES
0.5 0.7 1 1.0 2.0 1 1.3 1.8 2 2.0 2 2.3 2.7 3 3.4 6 4.9 5 6 6 6 6 6 6 7 7 7 7 7 1.5 6 6 10 7 7 11.5 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 7 11.8 7 11.8 7 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8 7 11.8	Limi argillosi marrone-grigiastri con forezioni carbonatiche e resti organici Limi sabbio-argillosi marrone-grigiastri con gilimi argillosi marrone-grigiastri con gilimi argillosi ed argillo-sabbiosi grigio (travertino), a buona consistenza.  Sabbie fini e medie limose grigio-gial vertino), a buona consistenza.  Calcare frammentato (Ø fino a 3-4 limosa grigiastra (travertino).  Sabbie fini, medie e grossolane limos mentate, a buona consistenza ma fra Limi sabbio-argillosi marrone-grigiastra (travertino) talora abbandant  Sabbie fini, medie e grossolane limos calcarea (travertino) talora abbandant  Sabbie fini e medie limose e limo-ar ocracee, con raro ghiaietto calcareo,  Limi argillo-sabbiosi grigi, con ghiaiett  Sabbie fini e medie limose e limo-ar ocraceo (travertino), sature ed a scarso  Limi argillosi grigio-azzurri can fiamma lora abbandante (travertino), saturi e  Limi argillosi grigio-azzurri can fiamma abbandante (travertino), saturi e  Limi argillosi grigio-azzurri can fiamma carace o grigiosa e limo-sabbiosa grigia,  Argille limose grigie con fiamme ocrace con sabbandante (travertino) grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi-argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi argillosa e limo-sabbiosa grigia, con ghiaietto calcarei (travertino, limi argillosa e limo-sabbiosa grigia, limi argillosa e limo-sabbiosa grigia, limi argillosa e limo-sabbiosa grigia limi argillosa e limi a	iamme grigie e vegetali: p ri, con fram phicietto, a b pstri, talora c  cm) in scars e giallastro- igili alla puna ri, saturi e p e marrone- e, sature. gillose grigio sature ed a  to, saturi ed gillose giallas a consistenza  o calcareo ( Ø fino a 3- sature.	edologico.  nenti litici: uona consisten ghiaietta a matrice s  pocracee, a conatura. lastici. cracee, con  giallastre a media consistre, con gh  one, saturi  n ghiaietta	pedologico. itenzo. careo (tra- sabbiosa e tratti ce- ghiaietto con fiamme sistenzo. consistenzo. consistenzo. coloreo ta-	2,4		PROPERTY A.4 4.4 3.8 6.2.4 1.8 2.9 1.4 2.1 1.8 2.4 1.8 2.4 1.8 2.4 1.8 2.1 1.8 2.3 1.5 1.5 1.8 1.1 1.0 9 1.4 1.5 1.8 1.1 1.0 9 1.4 1.5 1.8 1.1 1.0 9 1.4 1.5 1.8 1.1 1.1 1.2 2.5 3.1 3.5 1.5 1.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1		
16							_ f.s,		
LEGENDA		PROFONDIA' SONDAGOO	PROFONDITA' PEZONETRO	DATA	nverro 68			Н	
1, 2, 3 CAMPIONE INDISTURBATIO R CAMPIONE RIMANEGOATH S CAMPIONE RIMANEGOATH S.P.T. STANDARD PENETRATION	D DA S.P.T.	15,0 m	15,0 m	24.04.09 04.05.09	15:00 12:30	:00		05,23 05,23	

(PROVINCIA DI SIENA)

	236
RIFERIMENTO PRATICA EDILIZIA:	11/0180
Località:	LOC. FRANCOLINO – COMUNE DI POGGIBONSI
Progetto:	AMPLIAMENTO DI FABBRICATO
Numero e Tipo di Indagine:	2 SAGGI GEOGNOSTICI
Allegati:	2 STRATIGRAFIE
Data Indagine:	01/03/2011
Note:	

SCHEDA INDAGINE N.:





R- terreno vegetale e rimaneggiato



Tv- Travertini fotoclastici stratificati con sabbia



Saggio geognostico

#### STRATIGRAFIE DEI SAGGI

	data:24/02/2011	SAGGI0 1	loc. Francolino - Poggibonsi (SI)	
'	stratigrafia	CAMPIONI		pocket pen
	*************************************		Limi argillosi marrone con resti vegetali; pedologico	1
0,5	- W ~		·	0,7
			Travertino fitoclastico in matrice sabbiosa ocracea, in	2,3
1			blocchi cementati decimetrici e strati continui.	4,7
1,2	1			f.s.

	data:24/02/2011	SAGGI0 2	loc. Francolino - Poggibonsi (SI)	
	stratigrafia	CAMPIONI		pocket pen
0,3	~***		Limi argillosi marrone con resti vegetali; pedologico	2,5
			Sabbie limose ocracee con blocchi di travertino fitoclastico	4,7
-	1 D		e travertino fitoclastico in matrice sabbiosa ocracea, in	3,8
	1111		strati continui.	2,7
1,1	111/11			f.s.

(PROVINCIA DI SIENA)

SCHEDA INDAGINE N.:	237
RIFERIMENTO PRATICA EDILIZIA:	04/0718
Località:	LOC. FRANCOLINO – COMUNE DI POGGIBONSI
PROGETTO:	COSTRUZIONE DI POZZO AD USO DOMESTICO
Numero e Tipo di Indagine:	1 STRATIGRAFIA POZZO
Allegati:	1 STRATIGRAFIA POZZO
Data Indagine:	2004
Note:	



POZZO IN PROGETTO

POZZO ESISTENTE E RELATIVO LIVELLO PIEZOMETRICO MISURATO CON FREATIMETRO ELETTRICO



#### CARATTERISTICHE STRATIGRAFICHE DELLA RICERCA

PROFONDITA' DAL PIANO CAMPAGNA	DESCRIZIONE LITOLOGICA
0,0 - 1,5	Suolo pedologico sabbiosó con inclusi di travertino
1,5 - 3,0	Sabbie argillose con inclusi di travertino
3,0 - 7,0	Travertino sabbioso e vacúolare (I^ FALDA CEMENTATA)
7,0 - 8,5	Argille compatte
8,5 ~ 12,0	Sabbie grigie con inclusi lapidei di travertino (II^FALDA)
12,0 - 23,0	Argilla con livelli lapidei di calcare (Miocene Sup.)